Ultrasound Image Enhancement with the Variance of Diffusion Models

Yuxin Zhang, Clément Huneau, Jérôme Idier, Diana Mateus
{"title":"Ultrasound Image Enhancement with the Variance of Diffusion Models","authors":"Yuxin Zhang, Clément Huneau, Jérôme Idier, Diana Mateus","doi":"arxiv-2409.11380","DOIUrl":null,"url":null,"abstract":"Ultrasound imaging, despite its widespread use in medicine, often suffers\nfrom various sources of noise and artifacts that impact the signal-to-noise\nratio and overall image quality. Enhancing ultrasound images requires a\ndelicate balance between contrast, resolution, and speckle preservation. This\npaper introduces a novel approach that integrates adaptive beamforming with\ndenoising diffusion-based variance imaging to address this challenge. By\napplying Eigenspace-Based Minimum Variance (EBMV) beamforming and employing a\ndenoising diffusion model fine-tuned on ultrasound data, our method computes\nthe variance across multiple diffusion-denoised samples to produce high-quality\ndespeckled images. This approach leverages both the inherent multiplicative\nnoise of ultrasound and the stochastic nature of diffusion models. Experimental\nresults on a publicly available dataset demonstrate the effectiveness of our\nmethod in achieving superior image reconstructions from single plane-wave\nacquisitions. The code is available at:\nhttps://github.com/Yuxin-Zhang-Jasmine/IUS2024_Diffusion.","PeriodicalId":501130,"journal":{"name":"arXiv - CS - Computer Vision and Pattern Recognition","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrasound imaging, despite its widespread use in medicine, often suffers from various sources of noise and artifacts that impact the signal-to-noise ratio and overall image quality. Enhancing ultrasound images requires a delicate balance between contrast, resolution, and speckle preservation. This paper introduces a novel approach that integrates adaptive beamforming with denoising diffusion-based variance imaging to address this challenge. By applying Eigenspace-Based Minimum Variance (EBMV) beamforming and employing a denoising diffusion model fine-tuned on ultrasound data, our method computes the variance across multiple diffusion-denoised samples to produce high-quality despeckled images. This approach leverages both the inherent multiplicative noise of ultrasound and the stochastic nature of diffusion models. Experimental results on a publicly available dataset demonstrate the effectiveness of our method in achieving superior image reconstructions from single plane-wave acquisitions. The code is available at: https://github.com/Yuxin-Zhang-Jasmine/IUS2024_Diffusion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用扩散模型方差增强超声图像
超声波成像尽管在医学中应用广泛,但经常会受到各种噪声源和伪影的影响,从而影响信噪比和整体图像质量。增强超声图像需要在对比度、分辨率和斑点保留之间取得微妙的平衡。本文介绍了一种将自适应波束成形与基于扩散的方差成像相结合的新方法,以应对这一挑战。我们的方法通过应用基于特征空间的最小方差(EBMV)波束成形技术和根据超声波数据微调的腺扩散模型,计算多个腺扩散样本的方差,从而生成高质量的斑点图像。这种方法充分利用了超声波固有的乘噪声和扩散模型的随机性。在一个公开数据集上的实验结果表明,我们的方法能有效地从单平面波采集中获得优质图像重建。代码见:https://github.com/Yuxin-Zhang-Jasmine/IUS2024_Diffusion。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massively Multi-Person 3D Human Motion Forecasting with Scene Context Qwen2-VL: Enhancing Vision-Language Model's Perception of the World at Any Resolution Precise Forecasting of Sky Images Using Spatial Warping JEAN: Joint Expression and Audio-guided NeRF-based Talking Face Generation Applications of Knowledge Distillation in Remote Sensing: A Survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1