SLAck: Semantic, Location, and Appearance Aware Open-Vocabulary Tracking

Siyuan Li, Lei Ke, Yung-Hsu Yang, Luigi Piccinelli, Mattia Segù, Martin Danelljan, Luc Van Gool
{"title":"SLAck: Semantic, Location, and Appearance Aware Open-Vocabulary Tracking","authors":"Siyuan Li, Lei Ke, Yung-Hsu Yang, Luigi Piccinelli, Mattia Segù, Martin Danelljan, Luc Van Gool","doi":"arxiv-2409.11235","DOIUrl":null,"url":null,"abstract":"Open-vocabulary Multiple Object Tracking (MOT) aims to generalize trackers to\nnovel categories not in the training set. Currently, the best-performing\nmethods are mainly based on pure appearance matching. Due to the complexity of\nmotion patterns in the large-vocabulary scenarios and unstable classification\nof the novel objects, the motion and semantics cues are either ignored or\napplied based on heuristics in the final matching steps by existing methods. In\nthis paper, we present a unified framework SLAck that jointly considers\nsemantics, location, and appearance priors in the early steps of association\nand learns how to integrate all valuable information through a lightweight\nspatial and temporal object graph. Our method eliminates complex\npost-processing heuristics for fusing different cues and boosts the association\nperformance significantly for large-scale open-vocabulary tracking. Without\nbells and whistles, we outperform previous state-of-the-art methods for novel\nclasses tracking on the open-vocabulary MOT and TAO TETA benchmarks. Our code\nis available at\n\\href{https://github.com/siyuanliii/SLAck}{github.com/siyuanliii/SLAck}.","PeriodicalId":501130,"journal":{"name":"arXiv - CS - Computer Vision and Pattern Recognition","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Open-vocabulary Multiple Object Tracking (MOT) aims to generalize trackers to novel categories not in the training set. Currently, the best-performing methods are mainly based on pure appearance matching. Due to the complexity of motion patterns in the large-vocabulary scenarios and unstable classification of the novel objects, the motion and semantics cues are either ignored or applied based on heuristics in the final matching steps by existing methods. In this paper, we present a unified framework SLAck that jointly considers semantics, location, and appearance priors in the early steps of association and learns how to integrate all valuable information through a lightweight spatial and temporal object graph. Our method eliminates complex post-processing heuristics for fusing different cues and boosts the association performance significantly for large-scale open-vocabulary tracking. Without bells and whistles, we outperform previous state-of-the-art methods for novel classes tracking on the open-vocabulary MOT and TAO TETA benchmarks. Our code is available at \href{https://github.com/siyuanliii/SLAck}{github.com/siyuanliii/SLAck}.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SLAck:语义、位置和外观感知开放词汇跟踪
开放词汇多目标跟踪(MOT)旨在将跟踪器泛化到训练集中没有的类别。目前,性能最好的方法主要基于纯外观匹配。由于大词汇量场景中运动模式的复杂性和新物体分类的不稳定性,现有方法在最后的匹配步骤中要么忽略运动和语义线索,要么根据启发式方法应用运动和语义线索。在本文中,我们提出了一个统一的框架 SLAck,该框架在联想的早期步骤中联合考虑了语义、位置和外观先验,并学习如何通过轻量级的空间和时间对象图整合所有有价值的信息。我们的方法消除了融合不同线索的复杂后处理启发式方法,显著提高了大规模开放词汇跟踪的关联性能。在开放词汇 MOT 和 TAO TETA 基准上,我们在新类别跟踪方面的性能超过了以前最先进的方法。我们的代码可在以下网址获取:href{https://github.com/siyuanliii/SLAck}{github.com/siyuanliii/SLAck}。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massively Multi-Person 3D Human Motion Forecasting with Scene Context Qwen2-VL: Enhancing Vision-Language Model's Perception of the World at Any Resolution Precise Forecasting of Sky Images Using Spatial Warping JEAN: Joint Expression and Audio-guided NeRF-based Talking Face Generation Applications of Knowledge Distillation in Remote Sensing: A Survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1