Donghong Ding, Rong Huang, Tao Liu, Lei Yuan, Chuan Liu
{"title":"Effects of path patterns on residual stresses and deformations of directed energy deposition-arc built blocks","authors":"Donghong Ding, Rong Huang, Tao Liu, Lei Yuan, Chuan Liu","doi":"10.1080/17452759.2023.2296128","DOIUrl":null,"url":null,"abstract":"Deposition path patterns play an important role in controlling residual stresses and deformation in direct energy deposition-arc (DED-arc) process. In this paper, the effects of various path patterns on the evolution of the temperature history, residual stress distribution, and substrate deformations are investigated through experiments and finite element analysis. The predicted results of temperature fields and substrate deformations are verified experimentally by the infrared thermal imager and the laser profile scanner, respectively. It is found that the path patterns have significant effects on the stress distribution in the first few layers, and the minimum substrate deformation is obtained by the zigzag path along the short edge of the block. The proposed finite element method and measuring method are confirmed to be effective and feasible, providing valuable insight into the residual stresses and deformations control in the DED-arc process.","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"18 1","pages":""},"PeriodicalIF":12.7000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17452759.2023.2296128","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Deposition path patterns play an important role in controlling residual stresses and deformation in direct energy deposition-arc (DED-arc) process. In this paper, the effects of various path patterns on the evolution of the temperature history, residual stress distribution, and substrate deformations are investigated through experiments and finite element analysis. The predicted results of temperature fields and substrate deformations are verified experimentally by the infrared thermal imager and the laser profile scanner, respectively. It is found that the path patterns have significant effects on the stress distribution in the first few layers, and the minimum substrate deformation is obtained by the zigzag path along the short edge of the block. The proposed finite element method and measuring method are confirmed to be effective and feasible, providing valuable insight into the residual stresses and deformations control in the DED-arc process.
期刊介绍:
ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.