Modular Nano-Scaffold Biocatalysis for Superior PET Depolymerization and Valorization

Yujia Zhang, Chongsen Li, Ehsan Hashemi, Enting Xu, Xuemei Yang, Yanbing Lin, Hui Gao, Zhuobin Liang
{"title":"Modular Nano-Scaffold Biocatalysis for Superior PET Depolymerization and Valorization","authors":"Yujia Zhang, Chongsen Li, Ehsan Hashemi, Enting Xu, Xuemei Yang, Yanbing Lin, Hui Gao, Zhuobin Liang","doi":"10.1101/2024.09.16.613172","DOIUrl":null,"url":null,"abstract":"The global crisis of polyethylene terephthalate (PET) waste demands innovative solutions for sustainable management. Current approaches are often inefficient, energy-intensive, and result in incomplete depolymerization. Here, we introduce SPEED (Scaffold-enabled PET Enzyme Ensemble-augmented Degradation), a transformative biocatalytic platform engineered for the superior degradation across diverse PET substrates. Through the strategic combination of complementary PET hydrolases on a tailored protein nano-scaffold and extensive optimization, SPEED achieves near-complete depolymerization of PET into its constituent monomers, exceeding existing biocatalytic systems' efficiency by up to two orders of magnitude. The platform's versatility and industrial relevance are further demonstrated through successful integration with metal-organic frameworks (MOFs) for enhanced stability and reusability, enabling PET upcycling into valuable products, and its compatibility with a yeast-based live cell system for surface display. SPEED's high efficiency, adaptability, and cost-effectiveness position it as a powerful technology to accelerate sustainable plastic waste management and drive a circular PET economy.","PeriodicalId":501408,"journal":{"name":"bioRxiv - Synthetic Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Synthetic Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.16.613172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The global crisis of polyethylene terephthalate (PET) waste demands innovative solutions for sustainable management. Current approaches are often inefficient, energy-intensive, and result in incomplete depolymerization. Here, we introduce SPEED (Scaffold-enabled PET Enzyme Ensemble-augmented Degradation), a transformative biocatalytic platform engineered for the superior degradation across diverse PET substrates. Through the strategic combination of complementary PET hydrolases on a tailored protein nano-scaffold and extensive optimization, SPEED achieves near-complete depolymerization of PET into its constituent monomers, exceeding existing biocatalytic systems' efficiency by up to two orders of magnitude. The platform's versatility and industrial relevance are further demonstrated through successful integration with metal-organic frameworks (MOFs) for enhanced stability and reusability, enabling PET upcycling into valuable products, and its compatibility with a yeast-based live cell system for surface display. SPEED's high efficiency, adaptability, and cost-effectiveness position it as a powerful technology to accelerate sustainable plastic waste management and drive a circular PET economy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模块化纳米支架生物催化技术实现卓越的 PET 解聚和增值
全球聚对苯二甲酸乙二酯(PET)废弃物危机需要创新的可持续管理解决方案。目前的方法往往效率低下、能耗高,而且导致解聚不完全。在此,我们介绍 SPEED(Scaffold-enabled PET Enzyme Ensemble-augmented Degradation),这是一个变革性的生物催化平台,专为降解各种 PET 底物而设计。通过将互补的 PET水解酶战略性地结合到定制的蛋白质纳米支架上并进行广泛的优化,SPEED 实现了将 PET 近乎完全地解聚成其组成单体,其效率比现有的生物催化系统高出两个数量级。通过与金属有机框架(MOFs)的成功整合,该平台的多功能性和工业相关性得到了进一步证明,MOFs 可增强稳定性和可再利用性,使 PET 可以循环利用,转化为有价值的产品,而且该平台与基于酵母的活细胞系统兼容,可进行表面展示。SPEED 的高效率、适应性和成本效益使其成为加速可持续塑料废物管理和推动 PET 循环经济的强大技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DNA-templated spatially controlled proteolysis targeting chimeras for CyclinD1-CDK4/6 complex protein degradation Cas9AEY (Cas9-facilitated Homologous Recombination Assembly of non-specific Escherichia coli yeast vector) method of constructing large-sized DNA. Metabolite-responsive Control of Transcription by Phase Separation-based Synthetic Organelles A modular system for programming multistep activation of endogenous genes in stem cells Mutual dependence between membrane phase separation and bacterial division protein dynamics in synthetic cell models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1