Tarini Shukla, Wenwu Tang, Carl C. Trettin, Shen-En Chen, Craig Allan
{"title":"Determination of Microtopography of Low-Relief Tidal Freshwater Forested Wetlands Using LiDAR","authors":"Tarini Shukla, Wenwu Tang, Carl C. Trettin, Shen-En Chen, Craig Allan","doi":"10.3390/rs16183463","DOIUrl":null,"url":null,"abstract":"The microtopography of tidal freshwater forested wetlands (TFFWs) impacts biogeochemical processes affecting the carbon and nitrogen dynamics, ecological parameters, and habitat diversity. However, it is challenging to quantify low-relief microtopographic features that might only vary by a few tens of centimeters. We assess the high-resolution fine-scale microtopographic features of a TFFW with terrestrial LiDAR and aerial LiDAR to test a method appropriate to quantify microtopography in low-relief forested wetlands. Our method uses a combination of water-level and elevation thresholding (WALET) to delineate hollows in terrestrial and aerial LiDAR data. Close-range remote sensing technologies can be used for microtopography in forested regions. However, the aerial and terrestrial LiDAR technologies have not been used to analyze or compare microtopographic features in TFFW ecosystems. Therefore, the objectives of this study were (1) to characterize and assess the microtopography of low-relief tidal freshwater forested wetlands and (2) to identify optimal elevation thresholds for widely available aerial LiDAR data to characterize low-relief microtopography. Our results suggest that the WALET method can correctly characterize the microtopography in this area of low-relief topography. The microtopography characterization method described here provides a basis for advanced applications and scaling mechanistic models.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"100 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/rs16183463","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The microtopography of tidal freshwater forested wetlands (TFFWs) impacts biogeochemical processes affecting the carbon and nitrogen dynamics, ecological parameters, and habitat diversity. However, it is challenging to quantify low-relief microtopographic features that might only vary by a few tens of centimeters. We assess the high-resolution fine-scale microtopographic features of a TFFW with terrestrial LiDAR and aerial LiDAR to test a method appropriate to quantify microtopography in low-relief forested wetlands. Our method uses a combination of water-level and elevation thresholding (WALET) to delineate hollows in terrestrial and aerial LiDAR data. Close-range remote sensing technologies can be used for microtopography in forested regions. However, the aerial and terrestrial LiDAR technologies have not been used to analyze or compare microtopographic features in TFFW ecosystems. Therefore, the objectives of this study were (1) to characterize and assess the microtopography of low-relief tidal freshwater forested wetlands and (2) to identify optimal elevation thresholds for widely available aerial LiDAR data to characterize low-relief microtopography. Our results suggest that the WALET method can correctly characterize the microtopography in this area of low-relief topography. The microtopography characterization method described here provides a basis for advanced applications and scaling mechanistic models.
期刊介绍:
Remote Sensing (ISSN 2072-4292) publishes regular research papers, reviews, letters and communications covering all aspects of the remote sensing process, from instrument design and signal processing to the retrieval of geophysical parameters and their application in geosciences. Our aim is to encourage scientists to publish experimental, theoretical and computational results in as much detail as possible so that results can be easily reproduced. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.