Specification tests for normal/gamma and stable/gamma stochastic frontier models based on empirical transforms

IF 2 Q2 ECONOMICS Econometrics and Statistics Pub Date : 2024-08-28 DOI:10.1016/j.ecosta.2024.08.002
Christos K. Papadimitriou, Simos G. Meintanis, Bernardo B. Andrade, Mike G. Tsionas
{"title":"Specification tests for normal/gamma and stable/gamma stochastic frontier models based on empirical transforms","authors":"Christos K. Papadimitriou, Simos G. Meintanis, Bernardo B. Andrade, Mike G. Tsionas","doi":"10.1016/j.ecosta.2024.08.002","DOIUrl":null,"url":null,"abstract":"Goodness–of–fit tests for the distribution of the composed error term in a Stochastic Frontier Model (SFM) are suggested. The focus is on the case of a normal/gamma SFM and the heavy–tailed stable/gamma SFM. In the first case the moment generating function is used as tool while in the latter case the characteristic function of the error term is employed. In both cases our test statistics are formulated as weighted integrals of properly standardized data. The new normal/gamma test is consistent, and is shown to have an intrinsic relation to moment–based tests. The finite–sample behavior of resampling versions of both tests is investigated by Monte Carlo simulation, while several real–data applications are also included.","PeriodicalId":54125,"journal":{"name":"Econometrics and Statistics","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.ecosta.2024.08.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Goodness–of–fit tests for the distribution of the composed error term in a Stochastic Frontier Model (SFM) are suggested. The focus is on the case of a normal/gamma SFM and the heavy–tailed stable/gamma SFM. In the first case the moment generating function is used as tool while in the latter case the characteristic function of the error term is employed. In both cases our test statistics are formulated as weighted integrals of properly standardized data. The new normal/gamma test is consistent, and is shown to have an intrinsic relation to moment–based tests. The finite–sample behavior of resampling versions of both tests is investigated by Monte Carlo simulation, while several real–data applications are also included.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于经验变换的正态/伽马和稳定/伽马随机前沿模型的规格检验
提出了随机前沿模型(SFM)中组成误差项分布的拟合优度检验。重点是正态/伽马 SFM 和重尾稳定/伽马 SFM 的情况。在前一种情况下,使用矩生成函数作为工具,而在后一种情况下,则使用误差项的特征函数。在这两种情况下,我们的检验统计量都被表述为适当标准化数据的加权积分。新的正态/伽马检验是一致的,而且与基于矩的检验有内在联系。蒙特卡洛模拟研究了这两种检验的重采样版本的有限样本行为,同时还包括几个实际数据应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
10.50%
发文量
84
期刊介绍: Econometrics and Statistics is the official journal of the networks Computational and Financial Econometrics and Computational and Methodological Statistics. It publishes research papers in all aspects of econometrics and statistics and comprises of the two sections Part A: Econometrics and Part B: Statistics.
期刊最新文献
Editorial Board Empirical best predictors under multivariate Fay-Herriot models and their numerical approximation Forecasting with Machine Learning methods and multiple large datasets[formula omitted] Specification tests for normal/gamma and stable/gamma stochastic frontier models based on empirical transforms A Bayesian flexible model for testing Granger causality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1