A systematic review of vision transformers and convolutional neural networks for Alzheimer’s disease classification using 3D MRI images

Mario Alejandro Bravo-Ortiz, Sergio Alejandro Holguin-Garcia, Sebastián Quiñones-Arredondo, Alejandro Mora-Rubio, Ernesto Guevara-Navarro, Harold Brayan Arteaga-Arteaga, Gonzalo A. Ruz, Reinel Tabares-Soto
{"title":"A systematic review of vision transformers and convolutional neural networks for Alzheimer’s disease classification using 3D MRI images","authors":"Mario Alejandro Bravo-Ortiz, Sergio Alejandro Holguin-Garcia, Sebastián Quiñones-Arredondo, Alejandro Mora-Rubio, Ernesto Guevara-Navarro, Harold Brayan Arteaga-Arteaga, Gonzalo A. Ruz, Reinel Tabares-Soto","doi":"10.1007/s00521-024-10420-x","DOIUrl":null,"url":null,"abstract":"<p>Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that mainly affects memory and other cognitive functions, such as thinking, reasoning, and the ability to carry out daily activities. It is considered the most common form of dementia in older adults, but it can appear as early as the age of 25. Although the disease has no cure, treatment can be more effective if diagnosed early. In diagnosing AD, changes in the brain’s morphology are identified macroscopically, which is why deep learning models, such as convolutional neural networks (CNN) or vision transformers (ViT), excel in this task. We followed the Systematic Literature Review process, applying stages of the review protocol from it, which aims to detect the need for a review. Then, search equations were formulated and executed in several literature databases. Relevant publications were scanned and used to extract evidence to answer research questions. Several CNN and ViT approaches have already been tested on problems related to brain image analysis for disease detection. A total of 722 articles were found in the selected databases. Still, a series of filters were performed to decrease the number to 44 articles, focusing specifically on brain image analysis with CNN and ViT methods. Deep learning methods are effective for disease diagnosis, and the surge in research activity underscores its importance. However, the lack of access to repositories may introduce bias into the information. Full access demonstrates transparency and facilitates collaborative work in research.</p>","PeriodicalId":18925,"journal":{"name":"Neural Computing and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00521-024-10420-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that mainly affects memory and other cognitive functions, such as thinking, reasoning, and the ability to carry out daily activities. It is considered the most common form of dementia in older adults, but it can appear as early as the age of 25. Although the disease has no cure, treatment can be more effective if diagnosed early. In diagnosing AD, changes in the brain’s morphology are identified macroscopically, which is why deep learning models, such as convolutional neural networks (CNN) or vision transformers (ViT), excel in this task. We followed the Systematic Literature Review process, applying stages of the review protocol from it, which aims to detect the need for a review. Then, search equations were formulated and executed in several literature databases. Relevant publications were scanned and used to extract evidence to answer research questions. Several CNN and ViT approaches have already been tested on problems related to brain image analysis for disease detection. A total of 722 articles were found in the selected databases. Still, a series of filters were performed to decrease the number to 44 articles, focusing specifically on brain image analysis with CNN and ViT methods. Deep learning methods are effective for disease diagnosis, and the surge in research activity underscores its importance. However, the lack of access to repositories may introduce bias into the information. Full access demonstrates transparency and facilitates collaborative work in research.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Potential analysis of radiographic images to determine infestation of rice seeds Recommendation systems with user and item profiles based on symbolic modal data End-to-end entity extraction from OCRed texts using summarization models Firearm detection using DETR with multiple self-coordinated neural networks Automated defect identification in coherent diffraction imaging with smart continual learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1