Optimizing island sequencing in laser powder bed fusion using Genetic Algorithms

Amit Kumar Ball, Riddhiman Raut, Amrita Basak
{"title":"Optimizing island sequencing in laser powder bed fusion using Genetic Algorithms","authors":"Amit Kumar Ball, Riddhiman Raut, Amrita Basak","doi":"10.1007/s00521-024-10332-w","DOIUrl":null,"url":null,"abstract":"<p>Additive manufacturing, particularly laser powder bed fusion (L-PBF), is an emerging method for fabricating complex parts in various industries. However, it faces the persistent challenge of thermal deformation, a significant barrier to its wider application and reliability. Current strategies, while partially effective, do not fully address the intricate thermal dynamics of the process, indicating a clear research gap in optimizing manufacturing techniques for better thermal management. This study focuses on understanding and mitigating thermal deformation in L-PBF using Genetic Algorithms (GAs). The application of GAs as a ‘black-box’ approach is explored to gain insights into the complex physics of L-PBF. A comprehensive investigation into the optimization of island sequencing within L-PBF processes is presented, employing GAs to systematically reduce thermal deformation. Various island sequences in a bilayered block structure are analyzed to assess the effectiveness of GAs in minimizing deformation, including scenarios such as variations in block sizes and interlayer rotation angles. Statistical tools such as silhouette scores and probability density distribution plots are utilized to provide a thorough analysis of deformation patterns and their respective thermal behaviors. The results show GA's remarkable efficiency in enhancing thermal management, achieving a significant reduction in thermal deformation within a range of 12–15% across the examined scenarios. This achievement highlights GA's capability in rapid optimization of scan sequences for better thermal deformation control. The findings enhance the understanding of thermal dynamics in L-PBF and consequently open new avenues for improving the quality and reliability of other metal additive manufacturing processes as well.</p>","PeriodicalId":18925,"journal":{"name":"Neural Computing and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00521-024-10332-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Additive manufacturing, particularly laser powder bed fusion (L-PBF), is an emerging method for fabricating complex parts in various industries. However, it faces the persistent challenge of thermal deformation, a significant barrier to its wider application and reliability. Current strategies, while partially effective, do not fully address the intricate thermal dynamics of the process, indicating a clear research gap in optimizing manufacturing techniques for better thermal management. This study focuses on understanding and mitigating thermal deformation in L-PBF using Genetic Algorithms (GAs). The application of GAs as a ‘black-box’ approach is explored to gain insights into the complex physics of L-PBF. A comprehensive investigation into the optimization of island sequencing within L-PBF processes is presented, employing GAs to systematically reduce thermal deformation. Various island sequences in a bilayered block structure are analyzed to assess the effectiveness of GAs in minimizing deformation, including scenarios such as variations in block sizes and interlayer rotation angles. Statistical tools such as silhouette scores and probability density distribution plots are utilized to provide a thorough analysis of deformation patterns and their respective thermal behaviors. The results show GA's remarkable efficiency in enhancing thermal management, achieving a significant reduction in thermal deformation within a range of 12–15% across the examined scenarios. This achievement highlights GA's capability in rapid optimization of scan sequences for better thermal deformation control. The findings enhance the understanding of thermal dynamics in L-PBF and consequently open new avenues for improving the quality and reliability of other metal additive manufacturing processes as well.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Potential analysis of radiographic images to determine infestation of rice seeds Recommendation systems with user and item profiles based on symbolic modal data End-to-end entity extraction from OCRed texts using summarization models Firearm detection using DETR with multiple self-coordinated neural networks Automated defect identification in coherent diffraction imaging with smart continual learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1