Matteo Cei, Alessandra Operamolla, Francesco Zinna
{"title":"Interplay of Circularly Polarized Light with Molecular and Structural Chirality: Chiral Lanthanide Complexes and Cellulose Nanocrystals","authors":"Matteo Cei, Alessandra Operamolla, Francesco Zinna","doi":"10.1002/adom.202401714","DOIUrl":null,"url":null,"abstract":"<p>The interaction of circularly polarized (CP) light with chiral matter at different scales opens several possibilities of light manipulation in photonic and electronic devices. Here it is shown that in a multilayer architecture, it is possible to take advantage of the polarization-selective reflection of the nematic arrangement of cellulose nanocrystals and the strong intrinsic CP luminescence (CPL) of the various bands of chiral Eu complexes. In this way, both the intrinsic CPL and total emission of the complex are modified depending on the enantiomer applied and on the detection geometry. This concept may apply for polarization control in electronic and photonic devices and polarized optical cavities.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"12 34","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202401714","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202401714","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The interaction of circularly polarized (CP) light with chiral matter at different scales opens several possibilities of light manipulation in photonic and electronic devices. Here it is shown that in a multilayer architecture, it is possible to take advantage of the polarization-selective reflection of the nematic arrangement of cellulose nanocrystals and the strong intrinsic CP luminescence (CPL) of the various bands of chiral Eu complexes. In this way, both the intrinsic CPL and total emission of the complex are modified depending on the enantiomer applied and on the detection geometry. This concept may apply for polarization control in electronic and photonic devices and polarized optical cavities.
期刊介绍:
Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.