Qiuchen Wang,Mengjie Fu,Lihui Gao,Xin Yuan,Ju Wang
{"title":"A Drug Repositioning Approach Reveals Ergotamine May Be a Potential Drug for the Treatment of Alzheimer's Disease.","authors":"Qiuchen Wang,Mengjie Fu,Lihui Gao,Xin Yuan,Ju Wang","doi":"10.3233/jad-240235","DOIUrl":null,"url":null,"abstract":"Background\r\nAlzheimer's disease (AD) is a neurodegenerative disorder that is the most common form of dementia in the elderly. The drugs currently used to treat AD only have limited effects and are not able to cure the disease. Drug repositioning has increasingly become a promising approach to find potential drugs for diseases like AD.\r\n\r\nObjective\r\nTo screen potential drug candidates for AD based on the relationship between risk genes of AD and drugs.\r\n\r\nMethods\r\nWe collected the risk genes of AD and retrieved the information of known drugs from DrugBank. Then, the AD-related genes and the targets of each drug were mapped to the human protein-protein interaction network (PPIN) to represent AD and the drugs on the network. The network distances between each drug and AD were calculated to screen the drugs proximal to AD-related genes on PPIN, and the screened drug candidates were further analyzed by molecular docking and molecular dynamics simulations.\r\n\r\nResults\r\nWe compiled a list of 714 genes associated with AD. From 5,833 drugs used for human diseases, we identified 1,044 drugs that could be potentially used to treat AD. Then, amyloid-β (Aβ) protein, the key molecule involved in the pathogenesis of AD was selected as the target to further screen drugs that may inhibit Aβ aggregation by molecular docking. We found that ergotamine and RAF-265 could bind stably with Aβ. In further analysis by molecular dynamics simulations, both drugs exhibited reasonable stability.\r\n\r\nConclusions\r\nOur work indicated that ergotamine and RAF-265 may be potential candidates for treating AD.","PeriodicalId":14929,"journal":{"name":"Journal of Alzheimer's Disease","volume":"41 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alzheimer's Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/jad-240235","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Alzheimer's disease (AD) is a neurodegenerative disorder that is the most common form of dementia in the elderly. The drugs currently used to treat AD only have limited effects and are not able to cure the disease. Drug repositioning has increasingly become a promising approach to find potential drugs for diseases like AD.
Objective
To screen potential drug candidates for AD based on the relationship between risk genes of AD and drugs.
Methods
We collected the risk genes of AD and retrieved the information of known drugs from DrugBank. Then, the AD-related genes and the targets of each drug were mapped to the human protein-protein interaction network (PPIN) to represent AD and the drugs on the network. The network distances between each drug and AD were calculated to screen the drugs proximal to AD-related genes on PPIN, and the screened drug candidates were further analyzed by molecular docking and molecular dynamics simulations.
Results
We compiled a list of 714 genes associated with AD. From 5,833 drugs used for human diseases, we identified 1,044 drugs that could be potentially used to treat AD. Then, amyloid-β (Aβ) protein, the key molecule involved in the pathogenesis of AD was selected as the target to further screen drugs that may inhibit Aβ aggregation by molecular docking. We found that ergotamine and RAF-265 could bind stably with Aβ. In further analysis by molecular dynamics simulations, both drugs exhibited reasonable stability.
Conclusions
Our work indicated that ergotamine and RAF-265 may be potential candidates for treating AD.
期刊介绍:
The Journal of Alzheimer''s Disease (JAD) is an international multidisciplinary journal to facilitate progress in understanding the etiology, pathogenesis, epidemiology, genetics, behavior, treatment and psychology of Alzheimer''s disease. The journal publishes research reports, reviews, short communications, hypotheses, ethics reviews, book reviews, and letters-to-the-editor. The journal is dedicated to providing an open forum for original research that will expedite our fundamental understanding of Alzheimer''s disease.