The ring-shaped shadow of a rotating naked singularity with a complete photon sphere*

IF 3.6 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR 中国物理C Pub Date : 2024-09-30 DOI:10.1088/1674-1137/ad5660
Mingzhi Wang, 明智 王, Guanghai Guo, 广海 郭, Pengfei Yan, 鹏飞 闫, Songbai Chen, 松柏 陈, Jiliang Jing and 继良 荆
{"title":"The ring-shaped shadow of a rotating naked singularity with a complete photon sphere*","authors":"Mingzhi Wang, 明智 王, Guanghai Guo, 广海 郭, Pengfei Yan, 鹏飞 闫, Songbai Chen, 松柏 陈, Jiliang Jing and 继良 荆","doi":"10.1088/1674-1137/ad5660","DOIUrl":null,"url":null,"abstract":"We investigate the shadows of the Konoplya-Zhidenko naked singularity. In the spacetime of the Konoplya-Zhidenko naked singularity, not only an unstable retrograde light ring (LR) but also an unstable prograde LR exists, leading to the formation of a complete photon sphere (PS). Due to the absence of an event horizon, a dark disc-shaped shadow does not appear; instead, a ring-shaped shadow is observed. The ring-shaped shadow appears as an infinite number of relativistic Einstein rings in the image of the naked singularity. For some parameter values, only the unstable retrograde LR exists, resulting in an incomplete unstable PS and thus giving rise to an arc-shaped shadow for the Konoplya-Zhidenko naked singularity. The shadow of the Konoplya-Zhidenko naked singularity gradually shifts to the right as the rotation parameter a increases and gradually becomes smaller as the deformation parameter increases. Moreover, stable LRs and stable photon spherical orbits can exist in the Konoplya-Zhidenko naked singularity spacetime, but they have no effect on the image of the naked singularity. This study demonstrates that a rotating naked singularity can exhibit not only an arc-shaped shadow but also a ring-shaped shadow.","PeriodicalId":10250,"journal":{"name":"中国物理C","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国物理C","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-1137/ad5660","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the shadows of the Konoplya-Zhidenko naked singularity. In the spacetime of the Konoplya-Zhidenko naked singularity, not only an unstable retrograde light ring (LR) but also an unstable prograde LR exists, leading to the formation of a complete photon sphere (PS). Due to the absence of an event horizon, a dark disc-shaped shadow does not appear; instead, a ring-shaped shadow is observed. The ring-shaped shadow appears as an infinite number of relativistic Einstein rings in the image of the naked singularity. For some parameter values, only the unstable retrograde LR exists, resulting in an incomplete unstable PS and thus giving rise to an arc-shaped shadow for the Konoplya-Zhidenko naked singularity. The shadow of the Konoplya-Zhidenko naked singularity gradually shifts to the right as the rotation parameter a increases and gradually becomes smaller as the deformation parameter increases. Moreover, stable LRs and stable photon spherical orbits can exist in the Konoplya-Zhidenko naked singularity spacetime, but they have no effect on the image of the naked singularity. This study demonstrates that a rotating naked singularity can exhibit not only an arc-shaped shadow but also a ring-shaped shadow.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有完整光子球的旋转裸奇点的环形阴影*
我们研究了科诺普利亚-日登科裸奇点的阴影。在科诺普廖亚-日登科裸奇点的时空中,不仅存在不稳定的逆行光环(LR),还存在不稳定的顺行光环,从而形成了一个完整的光子球(PS)。由于不存在事件视界,因此不会出现暗圆盘状阴影;相反,会观察到环状阴影。环形阴影在裸奇点的图像中表现为无数个相对论爱因斯坦环。在某些参数值下,只存在不稳定的逆行 LR,导致不完整的不稳定 PS,从而产生了 Konoplya-Zhidenko 裸奇点的弧形阴影。随着旋转参数 a 的增大,Konoplya-Zhidenko 裸奇点的阴影逐渐向右移动,随着变形参数的增大,阴影逐渐变小。此外,在 Konoplya-Zhidenko 裸奇点时空中可以存在稳定的 LR 和稳定的光子球面轨道,但它们对裸奇点的图像没有影响。这项研究表明,旋转裸奇点不仅可以呈现弧形阴影,还可以呈现环形阴影。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
中国物理C
中国物理C 物理-物理:核物理
CiteScore
6.50
自引率
8.30%
发文量
8976
审稿时长
1.3 months
期刊介绍: Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of: Particle physics; Nuclear physics; Particle and nuclear astrophysics; Cosmology; Accelerator physics. The journal publishes original research papers, letters and reviews. The Letters section covers short reports on the latest important scientific results, published as quickly as possible. Such breakthrough research articles are a high priority for publication. The Editorial Board is composed of about fifty distinguished physicists, who are responsible for the review of submitted papers and who ensure the scientific quality of the journal. The journal has been awarded the Chinese Academy of Sciences ‘Excellent Journal’ award multiple times, and is recognized as one of China''s top one hundred key scientific periodicals by the General Administration of News and Publications.
期刊最新文献
CP violation of baryon decays with N π rescatterings* * Supported in part by the Natural Science Foundation of China (12335003), and the Fundamental Research Funds for the Central Universities (lzujbky-2024-oy02, lzujbky-2023-it12) Testing Bell inequality through at CEPC* * Tong Li is Supported by the National Natural Science Foundation of China (12375096, 12035008, 11975129), and "the Fundamental Research Funds for the Central Universities", Nankai University (63196013). Kai Ma was supported by the Natural Science Basic Research Program of Shaanxi Province, China (2023-JC-YB-041) and the Innovation Capability Support Program of Shaanxi Province, China (2021KJXX-47) Probing inelastic signatures of dark matter detection via polarized nucleus* * Supported by the National Natural Science Foundation of China (12275232, 12005180), the Natural Science Foundation of Shandong Province, China (ZR2020QA083) and the Project of Higher Educational Science and Technology Program of Shandong Province, China (2022KJ271) Radiative leptonic decay of heavy quarkonia* * Supported by the National Natural Science Foundation of China (12247119, 12042507) Inner fission barriers of uranium isotopes in the deformed relativistic Hartree-Bogoliubov theory in continuum* * This work was partly supported by the Natural Science Foundation of Henan Province, China (242300421156, 202300410480), the National Natural Science Foundation of China (12141501, U2032141, 11935003), the State Key Laboratory of Nuclear Physics and Technology, Peking University (NPT2023ZX03), the Super Computing Center of Beijing Normal University, and High-performance Computing Platform of Peking University
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1