Daniele Pala, David Clark, Christine Edwards, Elisa Pasqua, Laura Tigli, Barbara Pioselli, Piotr Malysa, Fabrizio Facchinetti, Fabio Rancati and Alessandro Accetta
{"title":"Design and synthesis of novel 8-(azaindolyl)-benzoazepinones as potent and selective ROCK inhibitors†","authors":"Daniele Pala, David Clark, Christine Edwards, Elisa Pasqua, Laura Tigli, Barbara Pioselli, Piotr Malysa, Fabrizio Facchinetti, Fabio Rancati and Alessandro Accetta","doi":"10.1039/D4MD00313F","DOIUrl":null,"url":null,"abstract":"<p >We report the characterization of potent and selective ROCK inhibitors identified through a core-hopping strategy. A virtual screening workflow, combining ligand- and structure-based methods, was applied on a known series of ROCK inhibitors bearing an acetamido-thiazole scaffold. The most promising replacement of the central core was represented by a benzoazepinone ring, which was selected as a starting point for a subsequent chemical exploration. The overall design approach exploited previous SARs available for congeneric series and crystallographic information to optimize the hinge-binding group as well as the terminal aromatic moiety interacting with the glycine-rich loop. The introduction of elongated and flexible charged groups led to compound <strong>15</strong>, which exhibited sub-nanomolar potencies in biochemical and cellular assays, as well as a remarkable selectivity over PKA. HDX studies not only supported the postulated binding mode of compound <strong>15</strong> but also confirmed the crucial role of specific ROCK peptide segments in driving ligand selectivity.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 11","pages":" 3862-3879"},"PeriodicalIF":3.5970,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedChemComm","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/md/d4md00313f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
We report the characterization of potent and selective ROCK inhibitors identified through a core-hopping strategy. A virtual screening workflow, combining ligand- and structure-based methods, was applied on a known series of ROCK inhibitors bearing an acetamido-thiazole scaffold. The most promising replacement of the central core was represented by a benzoazepinone ring, which was selected as a starting point for a subsequent chemical exploration. The overall design approach exploited previous SARs available for congeneric series and crystallographic information to optimize the hinge-binding group as well as the terminal aromatic moiety interacting with the glycine-rich loop. The introduction of elongated and flexible charged groups led to compound 15, which exhibited sub-nanomolar potencies in biochemical and cellular assays, as well as a remarkable selectivity over PKA. HDX studies not only supported the postulated binding mode of compound 15 but also confirmed the crucial role of specific ROCK peptide segments in driving ligand selectivity.
我们报告了通过跳核策略鉴定的强效和选择性 ROCK 抑制剂的特征。我们采用虚拟筛选工作流程,结合配体和基于结构的方法,对已知的一系列带有乙酰氨基噻唑支架的 ROCK 抑制剂进行了筛选。苯并氮杂卓环代表了最有希望的中心核心替代物,被选为后续化学探索的起点。总体设计方法利用了以前同源系列的 SAR 和晶体学信息,优化了铰链结合基团以及与富含甘氨酸的环相互作用的末端芳香分子。通过引入拉长而灵活的带电基团,化合物 15 在生化和细胞实验中表现出亚纳摩尔的效力,并对 PKA 具有显著的选择性。HDX 研究不仅支持化合物 15 的假设结合模式,还证实了特定 ROCK 肽段在驱动配体选择性方面的关键作用。
期刊介绍:
Research and review articles in medicinal chemistry and related drug discovery science; the official journal of the European Federation for Medicinal Chemistry.
In 2020, MedChemComm will change its name to RSC Medicinal Chemistry. Issue 12, 2019 will be the last issue as MedChemComm.