Microtubules coordinate mitochondria transport with myofibril morphogenesis during muscle development

Jerome Avellaneda, Duarte Candeias, Ana da Rosa Soares, Edgar R. Gomes, Nuno Miguel Luis, Frank Schnorrer
{"title":"Microtubules coordinate mitochondria transport with myofibril morphogenesis during muscle development","authors":"Jerome Avellaneda, Duarte Candeias, Ana da Rosa Soares, Edgar R. Gomes, Nuno Miguel Luis, Frank Schnorrer","doi":"10.1101/2024.09.16.613277","DOIUrl":null,"url":null,"abstract":"Muscle morphogenesis creates highly specialised muscle cells containing contractile myofibrils and energy producing mitochondria. Myofibrils are chains of sarcomeres, whose myosin motors slide over actin filaments at the expense of ATP. Thus, myofibrils and mitochondria are in intimate contact in mature muscles. However, how mitochondria morphogenesis is coordinated with myofibrillogenesis during development remains largely unknown. Here, we used in vivo imaging to investigate myofibril and mitochondria network dynamics in developing Drosophila flight muscles. We found that mitochondria rapidly intercalate from the surface of actin bundles to their interior; concomitantly, actin filaments condense to individual myofibrils. This ensures that mitochondria are in intimate proximity to each myofibril. Interestingly, antiparallel microtubules bundle in concert with the assembling myofibrils, suggesting a key role in myofibril orientation. Indeed, light-induced microtubule severing directly affects myofibril orientation, whereas knock-down of kinesin heavy chain specifically blocks mitochondria intercalation and long-range transport. Importantly, mitochondria-myofibril intercalation and microtubule-based transport of mitochondria is conserved in developing mammalian muscle. Together, these data identify a key role for microtubules in coordinating mitochondria and myofibril morphogenesis to build functional muscles.","PeriodicalId":501269,"journal":{"name":"bioRxiv - Developmental Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.16.613277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Muscle morphogenesis creates highly specialised muscle cells containing contractile myofibrils and energy producing mitochondria. Myofibrils are chains of sarcomeres, whose myosin motors slide over actin filaments at the expense of ATP. Thus, myofibrils and mitochondria are in intimate contact in mature muscles. However, how mitochondria morphogenesis is coordinated with myofibrillogenesis during development remains largely unknown. Here, we used in vivo imaging to investigate myofibril and mitochondria network dynamics in developing Drosophila flight muscles. We found that mitochondria rapidly intercalate from the surface of actin bundles to their interior; concomitantly, actin filaments condense to individual myofibrils. This ensures that mitochondria are in intimate proximity to each myofibril. Interestingly, antiparallel microtubules bundle in concert with the assembling myofibrils, suggesting a key role in myofibril orientation. Indeed, light-induced microtubule severing directly affects myofibril orientation, whereas knock-down of kinesin heavy chain specifically blocks mitochondria intercalation and long-range transport. Importantly, mitochondria-myofibril intercalation and microtubule-based transport of mitochondria is conserved in developing mammalian muscle. Together, these data identify a key role for microtubules in coordinating mitochondria and myofibril morphogenesis to build functional muscles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微管在肌肉发育过程中协调线粒体运输和肌原纤维形态发生
肌肉形态发生产生了高度特化的肌肉细胞,其中包含收缩肌纤维和产生能量的线粒体。肌纤维是由肌节组成的链条,其肌球蛋白马达在肌动蛋白丝上滑动时需要消耗 ATP。因此,在成熟肌肉中,肌原纤维和线粒体密切接触。然而,线粒体的形态发生如何在发育过程中与肌原纤维的发生相协调在很大程度上仍是未知数。在这里,我们利用活体成像技术研究了果蝇飞行肌发育过程中肌原纤维和线粒体网络的动态变化。我们发现,线粒体迅速从肌动蛋白束表面向其内部插接;与此同时,肌动蛋白丝凝结成单个肌原纤维。这确保了线粒体与每根肌原纤维紧密相连。有趣的是,反平行微管与组装中的肌原纤维协同成束,这表明微管在肌原纤维定向中起着关键作用。事实上,光诱导的微管切断会直接影响肌原纤维的定向,而敲除驱动蛋白重链则会特异性地阻止线粒体的插入和长距离运输。重要的是,线粒体-肌原纤维间插和基于微管的线粒体运输在发育中的哺乳动物肌肉中是保守的。这些数据共同确定了微管在协调线粒体和肌原纤维形态发生以构建功能性肌肉中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The pericardium forms as a distinct structure during heart formation Centralspindlin promotes C. elegans anchor cell specification, vulva induction and morphogenesis Human macula formation involves two waves of retinoic acid signaling suppression via CYP26A1 regulating cell cycle exit and cone specification Single Cell Profiling in the Sox10Dom/+ Hirschsprung Mouse Implicates Hoxa6 in Enteric Neuron Lineage Allocation Mylpf dosage is proportionate to fast-twitch myofibril size in the zebrafish embryo
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1