Integration of proteomic data with genome‐scale metabolic models: A methodological overview

IF 4.5 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Protein Science Pub Date : 2024-09-14 DOI:10.1002/pro.5150
Farid Zare, Ronan M. T. Fleming
{"title":"Integration of proteomic data with genome‐scale metabolic models: A methodological overview","authors":"Farid Zare, Ronan M. T. Fleming","doi":"10.1002/pro.5150","DOIUrl":null,"url":null,"abstract":"The integration of proteomics data with constraint‐based reconstruction and analysis (COBRA) models plays a pivotal role in understanding the relationship between genotype and phenotype and bridges the gap between genome‐level phenomena and functional adaptations. Integrating a generic genome‐scale model with information on proteins enables generation of a context‐specific metabolic model which improves the accuracy of model prediction. This review explores methodologies for incorporating proteomics data into genome‐scale models. Available methods are grouped into four distinct categories based on their approach to integrate proteomics data and their depth of modeling. Within each category section various methods are introduced in chronological order of publication demonstrating the progress of this field. Furthermore, challenges and potential solutions to further progress are outlined, including the limited availability of appropriate in vitro data, experimental enzyme turnover rates, and the trade‐off between model accuracy, computational tractability, and data scarcity. In conclusion, methods employing simpler approaches demand fewer kinetic and omics data, consequently leading to a less complex mathematical problem and reduced computational expenses. On the other hand, approaches that delve deeper into cellular mechanisms and aim to create detailed mathematical models necessitate more extensive kinetic and omics data, resulting in a more complex and computationally demanding problem. However, in some cases, this increased cost can be justified by the potential for more precise predictions.","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"22 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.5150","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of proteomics data with constraint‐based reconstruction and analysis (COBRA) models plays a pivotal role in understanding the relationship between genotype and phenotype and bridges the gap between genome‐level phenomena and functional adaptations. Integrating a generic genome‐scale model with information on proteins enables generation of a context‐specific metabolic model which improves the accuracy of model prediction. This review explores methodologies for incorporating proteomics data into genome‐scale models. Available methods are grouped into four distinct categories based on their approach to integrate proteomics data and their depth of modeling. Within each category section various methods are introduced in chronological order of publication demonstrating the progress of this field. Furthermore, challenges and potential solutions to further progress are outlined, including the limited availability of appropriate in vitro data, experimental enzyme turnover rates, and the trade‐off between model accuracy, computational tractability, and data scarcity. In conclusion, methods employing simpler approaches demand fewer kinetic and omics data, consequently leading to a less complex mathematical problem and reduced computational expenses. On the other hand, approaches that delve deeper into cellular mechanisms and aim to create detailed mathematical models necessitate more extensive kinetic and omics data, resulting in a more complex and computationally demanding problem. However, in some cases, this increased cost can be justified by the potential for more precise predictions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蛋白质组数据与基因组尺度代谢模型的整合:方法概述
蛋白质组学数据与基于约束的重建和分析(COBRA)模型的整合在理解基因型与表型之间的关系方面起着关键作用,并在基因组水平的现象与功能适应之间架起了桥梁。将基因组尺度的通用模型与蛋白质信息相结合,可以生成特定背景的代谢模型,从而提高模型预测的准确性。本综述探讨了将蛋白质组学数据纳入基因组尺度模型的方法。根据整合蛋白质组学数据的方法及其建模深度,将现有方法分为四个不同的类别。在每个类别中,按发表时间顺序介绍了各种方法,展示了这一领域的进展。此外,还概述了进一步取得进展所面临的挑战和可能的解决方案,包括适当的体外数据、实验酶周转率的有限可用性,以及模型准确性、计算可操作性和数据稀缺性之间的权衡。总之,采用较为简单的方法需要较少的动力学和组学数据,从而减少了数学问题的复杂性,降低了计算费用。另一方面,深入研究细胞机制并旨在创建详细数学模型的方法需要更多的动力学和全微米数据,从而导致问题更加复杂,计算要求更高。不过,在某些情况下,由于有可能获得更精确的预测,成本的增加也是合理的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Protein Science
Protein Science 生物-生化与分子生物学
CiteScore
12.40
自引率
1.20%
发文量
246
审稿时长
1 months
期刊介绍: Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution. Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics. The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication. Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).
期刊最新文献
A protein fitness predictive framework based on feature combination and intelligent searching. Amino acid variability at W194 of Staphylococcus aureus sortase A alters nucleophile specificity. Characterization of DsrD and its interaction with the DsrAB dissimilatory sulfite reductase. Complexity associated with caprylate binding to bovine serum albumin: Dimerization, allostery, and variance between the change in free energy and enthalpy of binding. Disulfide-mediated oligomerization of mutant Cu/Zn-superoxide dismutase associated with canine degenerative myelopathy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1