Goodness-of-fit testing in bivariate count time series based on a bivariate dispersion index

IF 1.4 4区 数学 Q2 STATISTICS & PROBABILITY Asta-Advances in Statistical Analysis Pub Date : 2024-09-17 DOI:10.1007/s10182-024-00512-3
Huiqiao Wang, Christian H. Weiß, Mingming Zhang
{"title":"Goodness-of-fit testing in bivariate count time series based on a bivariate dispersion index","authors":"Huiqiao Wang, Christian H. Weiß, Mingming Zhang","doi":"10.1007/s10182-024-00512-3","DOIUrl":null,"url":null,"abstract":"<p>A common choice for the marginal distribution of a bivariate count time series is the bivariate Poisson distribution. In practice, however, when the count data exhibit zero inflation, overdispersion or non-stationarity features, such that a marginal bivariate Poisson distribution is not suitable. To test the discrepancy between the actual count data and the bivariate Poisson distribution, we propose a new goodness-of-fit test based on a bivariate dispersion index. The asymptotic distribution of the test statistic under the null hypothesis of a first-order bivariate integer-valued autoregressive model with marginal bivariate Poisson distribution is derived, and the finite-sample performance of the goodness-of-fit test is analyzed by simulations. A real-data example illustrate the application and usefulness of the test in practice.</p>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":"54 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asta-Advances in Statistical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10182-024-00512-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

A common choice for the marginal distribution of a bivariate count time series is the bivariate Poisson distribution. In practice, however, when the count data exhibit zero inflation, overdispersion or non-stationarity features, such that a marginal bivariate Poisson distribution is not suitable. To test the discrepancy between the actual count data and the bivariate Poisson distribution, we propose a new goodness-of-fit test based on a bivariate dispersion index. The asymptotic distribution of the test statistic under the null hypothesis of a first-order bivariate integer-valued autoregressive model with marginal bivariate Poisson distribution is derived, and the finite-sample performance of the goodness-of-fit test is analyzed by simulations. A real-data example illustrate the application and usefulness of the test in practice.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于双变量离散指数的双变量计数时间序列拟合优度测试
双变量泊松分布是双变量计数时间序列边际分布的常见选择。但在实际应用中,当计数数据表现出零膨胀、过度分散或非平稳性等特征时,边际双变量泊松分布就不适用了。为了检验实际计数数据与双变量泊松分布之间的差异,我们提出了一种新的基于双变量离散指数的拟合优度检验方法。推导了在边际二维泊松分布的一阶二维整数值自回归模型的零假设下检验统计量的渐近分布,并通过模拟分析了拟合优度检验的有限样本性能。一个真实数据示例说明了该检验在实践中的应用和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Asta-Advances in Statistical Analysis
Asta-Advances in Statistical Analysis 数学-统计学与概率论
CiteScore
2.20
自引率
14.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: AStA - Advances in Statistical Analysis, a journal of the German Statistical Society, is published quarterly and presents original contributions on statistical methods and applications and review articles.
期刊最新文献
Nowcasting GDP using machine learning methods Change point detection in high dimensional covariance matrix using Pillai’s statistics Goodness-of-fit testing in bivariate count time series based on a bivariate dispersion index Bayesian joint relatively quantile regression of latent ordinal multivariate linear models with application to multirater agreement analysis A Finite-sample bias correction method for general linear model in the presence of differential measurement errors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1