Fit and Prune: Fast and Training-free Visual Token Pruning for Multi-modal Large Language Models

Weihao Ye, Qiong Wu, Wenhao Lin, Yiyi Zhou
{"title":"Fit and Prune: Fast and Training-free Visual Token Pruning for Multi-modal Large Language Models","authors":"Weihao Ye, Qiong Wu, Wenhao Lin, Yiyi Zhou","doi":"arxiv-2409.10197","DOIUrl":null,"url":null,"abstract":"Recent progress in Multimodal Large Language Models(MLLMs) often use large\nimage tokens to compensate the visual shortcoming of MLLMs, which not only\nexhibits obvious redundancy but also greatly exacerbates the already high\ncomputation. Token pruning is an effective solution for speeding up MLLMs, but\nwhen and how to drop tokens still remains a challenge. In this paper, we\npropose a novel and training-free approach for the effective visual token\npruning of MLLMs, termed FitPrune, which can quickly produce a complete pruning\nrecipe for MLLMs according to a pre-defined budget. Specifically, FitPrune\nconsiders token pruning as a statistical problem of MLLM and its objective is\nto find out an optimal pruning scheme that can minimize the divergence of the\nattention distributions before and after pruning. In practice, FitPrune can be\nquickly accomplished based on the attention statistics from a small batch of\ninference data, avoiding the expensive trials of MLLMs. According to the\npruning recipe, an MLLM can directly remove the redundant visual tokens of\ndifferent examples during inference. To validate FitPrune, we apply it to a set\nof recent MLLMs, including LLaVA-1.5, LLaVA-HR and LLaVA-NEXT, and conduct\nextensive experiments on a set of benchmarks. The experimental results show\nthat our FitPrune can not only reduce the computational complexity to a large\nextent, while retaining high performance, e.g., -54.9% FLOPs for LLaVA-NEXT\nwith only 0.5% accuracy drop. Notably, the pruning recipe can be obtained in\nabout 5 minutes. Our code is available at https://github.com/ywh187/FitPrune.","PeriodicalId":501480,"journal":{"name":"arXiv - CS - Multimedia","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent progress in Multimodal Large Language Models(MLLMs) often use large image tokens to compensate the visual shortcoming of MLLMs, which not only exhibits obvious redundancy but also greatly exacerbates the already high computation. Token pruning is an effective solution for speeding up MLLMs, but when and how to drop tokens still remains a challenge. In this paper, we propose a novel and training-free approach for the effective visual token pruning of MLLMs, termed FitPrune, which can quickly produce a complete pruning recipe for MLLMs according to a pre-defined budget. Specifically, FitPrune considers token pruning as a statistical problem of MLLM and its objective is to find out an optimal pruning scheme that can minimize the divergence of the attention distributions before and after pruning. In practice, FitPrune can be quickly accomplished based on the attention statistics from a small batch of inference data, avoiding the expensive trials of MLLMs. According to the pruning recipe, an MLLM can directly remove the redundant visual tokens of different examples during inference. To validate FitPrune, we apply it to a set of recent MLLMs, including LLaVA-1.5, LLaVA-HR and LLaVA-NEXT, and conduct extensive experiments on a set of benchmarks. The experimental results show that our FitPrune can not only reduce the computational complexity to a large extent, while retaining high performance, e.g., -54.9% FLOPs for LLaVA-NEXT with only 0.5% accuracy drop. Notably, the pruning recipe can be obtained in about 5 minutes. Our code is available at https://github.com/ywh187/FitPrune.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
拟合和剪枝:多模态大型语言模型的快速免训练视觉标记剪枝
多模态大语言模型(MLLMs)的最新研究进展通常使用大图像标记来弥补 MLLMs 在视觉上的不足,这不仅表现出明显的冗余,而且大大加剧了本已很高的计算量。标记剪枝是加速 MLLM 的有效解决方案,但何时以及如何丢弃标记仍是一个难题。在本文中,我们提出了一种新颖且无需训练的方法,用于对 MLLMs 进行有效的视觉标记剪枝,称为 FitPrune,它可以根据预先定义的预算,快速为 MLLMs 生成完整的剪枝方案。具体来说,FitPrun 将标记剪枝视为 MLLM 的一个统计问题,其目标是找出一个最优剪枝方案,使剪枝前后注意力分布的发散最小。在实践中,FitPrune 可以根据小批量推理数据的注意力统计快速完成,避免了 MLLM 昂贵的试验费用。根据剪枝配方,MLLM 可以直接去除推理过程中不同示例的冗余视觉标记。为了验证 FitPrune 的有效性,我们将其应用于一组最新的 MLLM,包括 LLaVA-1.5、LLaVA-HR 和 LLaVA-NEXT,并在一组基准上进行了广泛的实验。实验结果表明,我们的FitPrune不仅能在很大程度上降低计算复杂度,同时还能保持较高的性能,例如,LLaVA-NEXT的FLOPS为-54.9%,而精度下降仅为0.5%。值得注意的是,剪枝配方可以在大约 5 分钟内获得。我们的代码见 https://github.com/ywh187/FitPrune。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vista3D: Unravel the 3D Darkside of a Single Image MoRAG -- Multi-Fusion Retrieval Augmented Generation for Human Motion Efficient Low-Resolution Face Recognition via Bridge Distillation Enhancing Few-Shot Classification without Forgetting through Multi-Level Contrastive Constraints NVLM: Open Frontier-Class Multimodal LLMs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1