Multi-modal Speech Transformer Decoders: When Do Multiple Modalities Improve Accuracy?

Yiwen Guan, Viet Anh Trinh, Vivek Voleti, Jacob Whitehill
{"title":"Multi-modal Speech Transformer Decoders: When Do Multiple Modalities Improve Accuracy?","authors":"Yiwen Guan, Viet Anh Trinh, Vivek Voleti, Jacob Whitehill","doi":"arxiv-2409.09221","DOIUrl":null,"url":null,"abstract":"Decoder-only discrete-token language models have recently achieved\nsignificant success in automatic speech recognition. However, systematic\nanalyses of how different modalities impact performance in specific scenarios\nremain limited. In this paper, we investigate the effects of multiple\nmodalities on recognition accuracy on both synthetic and real-world datasets.\nOur experiments suggest that: (1) Integrating more modalities can increase\naccuracy; in particular, our paper is, to our best knowledge, the first to show\nthe benefit of combining audio, image context, and lip information; (2) Images\nas a supplementary modality for speech recognition provide the greatest benefit\nat moderate noise levels, moreover, they exhibit a different trend compared to\ninherently synchronized modalities like lip movements; (3) Performance improves\non both synthetic and real-world datasets when the most relevant visual\ninformation is filtered as a preprocessing step.","PeriodicalId":501480,"journal":{"name":"arXiv - CS - Multimedia","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Decoder-only discrete-token language models have recently achieved significant success in automatic speech recognition. However, systematic analyses of how different modalities impact performance in specific scenarios remain limited. In this paper, we investigate the effects of multiple modalities on recognition accuracy on both synthetic and real-world datasets. Our experiments suggest that: (1) Integrating more modalities can increase accuracy; in particular, our paper is, to our best knowledge, the first to show the benefit of combining audio, image context, and lip information; (2) Images as a supplementary modality for speech recognition provide the greatest benefit at moderate noise levels, moreover, they exhibit a different trend compared to inherently synchronized modalities like lip movements; (3) Performance improves on both synthetic and real-world datasets when the most relevant visual information is filtered as a preprocessing step.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多模态语音变换解码器:多种模式何时能提高准确性?
纯解码器离散令牌语言模型最近在自动语音识别领域取得了巨大成功。然而,对不同模式在特定场景中如何影响性能的系统分析仍然有限。在本文中,我们在合成和真实世界数据集上研究了多种模态对识别准确率的影响:我们的实验表明:(1) 整合更多模态可以提高识别准确率;特别是,据我们所知,我们的论文首次展示了整合音频、图像上下文和唇语信息的益处;(2) 图像作为语音识别的辅助模态,在中等噪声水平下具有最大益处,而且,与唇语运动等固有同步模态相比,它们表现出不同的趋势;(3) 在合成和真实世界数据集上,当作为预处理步骤过滤最相关的视觉信息时,识别性能都会提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vista3D: Unravel the 3D Darkside of a Single Image MoRAG -- Multi-Fusion Retrieval Augmented Generation for Human Motion Efficient Low-Resolution Face Recognition via Bridge Distillation Enhancing Few-Shot Classification without Forgetting through Multi-Level Contrastive Constraints NVLM: Open Frontier-Class Multimodal LLMs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1