Kai Robertson, Tia A. Griffith, Tessa J. Helman, Kyle Hatton-Jones, Saba Naghipour, Dylan A. Robertson, Jason N. Peart, John P. Headrick, Eugene F. Du Toit
{"title":"Early life stress exacerbates the obesogenic and anxiogenic effects of a Western diet without worsening cardiac ischaemic tolerance in male mice","authors":"Kai Robertson, Tia A. Griffith, Tessa J. Helman, Kyle Hatton-Jones, Saba Naghipour, Dylan A. Robertson, Jason N. Peart, John P. Headrick, Eugene F. Du Toit","doi":"10.1017/s2040174424000205","DOIUrl":null,"url":null,"abstract":"Early life stress (ELS) and a Western diet (WD) promote mood and cardiovascular disorders, however, how these risks interact in disease pathogenesis is unclear. We assessed effects of ELS with or without a subsequent WD on behaviour, cardiometabolic risk factors, and cardiac function/ischaemic tolerance in male mice. Fifty-six new-born male C57BL/6J mice were randomly allocated to a control group (CON) undisturbed before weaning, or to maternal separation (3h/day) and early (postnatal day 17) weaning (MSEW). Mice consumed standard rodent chow (CON, <jats:italic>n</jats:italic> = 14; MSEW, <jats:italic>n</jats:italic> = 15) or WD chow (WD, <jats:italic>n</jats:italic> = 19; MSEW + WD, <jats:italic>n</jats:italic> = 19) from week 8 to 24. Fasted blood was sampled and open field test and elevated plus maze (EPM) tests undertaken at 7, 15, and 23 weeks of age, with hearts excised at 24 weeks for Langendorff perfusion (evaluating pre- and post-ischaemic function). MSEW alone transiently increased open field activity at 7 weeks; body weight and serum triglycerides at 4 and 7 weeks, respectively; and final blood glucose levels and insulin resistance at 23 weeks. WD increased insulin resistance and body weight gain, the latter potentiated by MSEW. MSEW + WD was anxiogenic, reducing EPM open arm activity <jats:italic>vs</jats:italic>. WD alone. Although MSEW had modest metabolic effects and did not influence cardiac function or ischaemic tolerance in lean mice, it exacerbated weight gain and anxiogenesis, and improved ischaemic tolerance in WD fed animals. MSEW-induced increases in body weight (obesity) in WD fed animals in the absence of changes in insulin resistance may have protected the hearts of these mice.","PeriodicalId":49167,"journal":{"name":"Journal of Developmental Origins of Health and Disease","volume":"63 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Developmental Origins of Health and Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/s2040174424000205","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
Early life stress (ELS) and a Western diet (WD) promote mood and cardiovascular disorders, however, how these risks interact in disease pathogenesis is unclear. We assessed effects of ELS with or without a subsequent WD on behaviour, cardiometabolic risk factors, and cardiac function/ischaemic tolerance in male mice. Fifty-six new-born male C57BL/6J mice were randomly allocated to a control group (CON) undisturbed before weaning, or to maternal separation (3h/day) and early (postnatal day 17) weaning (MSEW). Mice consumed standard rodent chow (CON, n = 14; MSEW, n = 15) or WD chow (WD, n = 19; MSEW + WD, n = 19) from week 8 to 24. Fasted blood was sampled and open field test and elevated plus maze (EPM) tests undertaken at 7, 15, and 23 weeks of age, with hearts excised at 24 weeks for Langendorff perfusion (evaluating pre- and post-ischaemic function). MSEW alone transiently increased open field activity at 7 weeks; body weight and serum triglycerides at 4 and 7 weeks, respectively; and final blood glucose levels and insulin resistance at 23 weeks. WD increased insulin resistance and body weight gain, the latter potentiated by MSEW. MSEW + WD was anxiogenic, reducing EPM open arm activity vs. WD alone. Although MSEW had modest metabolic effects and did not influence cardiac function or ischaemic tolerance in lean mice, it exacerbated weight gain and anxiogenesis, and improved ischaemic tolerance in WD fed animals. MSEW-induced increases in body weight (obesity) in WD fed animals in the absence of changes in insulin resistance may have protected the hearts of these mice.
期刊介绍:
JDOHaD publishes leading research in the field of Developmental Origins of Health and Disease (DOHaD). The Journal focuses on the environment during early pre-natal and post-natal animal and human development, interactions between environmental and genetic factors, including environmental toxicants, and their influence on health and disease risk throughout the lifespan. JDOHaD publishes work on developmental programming, fetal and neonatal biology and physiology, early life nutrition, especially during the first 1,000 days of life, human ecology and evolution and Gene-Environment Interactions.
JDOHaD also accepts manuscripts that address the social determinants or education of health and disease risk as they relate to the early life period, as well as the economic and health care costs of a poor start to life. Accordingly, JDOHaD is multi-disciplinary, with contributions from basic scientists working in the fields of physiology, biochemistry and nutrition, endocrinology and metabolism, developmental biology, molecular biology/ epigenetics, human biology/ anthropology, and evolutionary developmental biology. Moreover clinicians, nutritionists, epidemiologists, social scientists, economists, public health specialists and policy makers are very welcome to submit manuscripts.
The journal includes original research articles, short communications and reviews, and has regular themed issues, with guest editors; it is also a platform for conference/workshop reports, and for opinion, comment and interaction.