Prakash Pudasaini, Thaine H. Assumpção, Andreja Jonoski, Ioana Popescu
{"title":"Sensitivity Analysis and Parameterization of Gridded and Lumped Models Representation for Heterogeneous Land Use and Land Cover","authors":"Prakash Pudasaini, Thaine H. Assumpção, Andreja Jonoski, Ioana Popescu","doi":"10.3390/w16182608","DOIUrl":null,"url":null,"abstract":"Hydrological processes can be highly influenced by changes in land use land cover (LULC), which can make hydrological modelling also very sensitive to land cover characterization. Therefore, obtaining up-to-date LULC data is a crucial process in hydrological modelling, and as such, different sources of LULC data raises questions on their quality and applicability. This is especially true with new data sources, such as citizen science-based land cover maps. Therefore, this research aims to explore the influence of LULC data sources on hydrological models via their parameterization and by performing sensitivity analyses. Kiffissos catchment, in Greece, a poorly gauged and highly urbanized basin including the city of Athens, is the case study area. In total, 12 continuous hydrological models were developed by mainly varying their structure and parametrization (lumped and gridded) and using three LULC datasets: coordination of information on the environment (CORINE), Urban Atlas and Scent (citizen-based). It was found that excess precipitation is negligibly contributed to by soil saturation and is dominated by the runoff over impervious areas. Therefore, imperviousness was the main parameter influencing both sensitivity to land cover and parameterization. Lastly, although the parametrization as lumped and gridded models affected the representation of hydrological processes in pervious areas, it was not relevant in terms of excess precipitation.","PeriodicalId":23788,"journal":{"name":"Water","volume":"201 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/w16182608","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrological processes can be highly influenced by changes in land use land cover (LULC), which can make hydrological modelling also very sensitive to land cover characterization. Therefore, obtaining up-to-date LULC data is a crucial process in hydrological modelling, and as such, different sources of LULC data raises questions on their quality and applicability. This is especially true with new data sources, such as citizen science-based land cover maps. Therefore, this research aims to explore the influence of LULC data sources on hydrological models via their parameterization and by performing sensitivity analyses. Kiffissos catchment, in Greece, a poorly gauged and highly urbanized basin including the city of Athens, is the case study area. In total, 12 continuous hydrological models were developed by mainly varying their structure and parametrization (lumped and gridded) and using three LULC datasets: coordination of information on the environment (CORINE), Urban Atlas and Scent (citizen-based). It was found that excess precipitation is negligibly contributed to by soil saturation and is dominated by the runoff over impervious areas. Therefore, imperviousness was the main parameter influencing both sensitivity to land cover and parameterization. Lastly, although the parametrization as lumped and gridded models affected the representation of hydrological processes in pervious areas, it was not relevant in terms of excess precipitation.
期刊介绍:
Water (ISSN 2073-4441) is an international and cross-disciplinary scholarly journal covering all aspects of water including water science and technology, and the hydrology, ecology and management of water resources. It publishes regular research papers, critical reviews and short communications, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.