The Convergence of Antibiotic Contamination, Resistance, and Climate Dynamics in Freshwater Ecosystems

IF 3 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Water Pub Date : 2024-09-14 DOI:10.3390/w16182606
Marcelo Pedrosa Gomes
{"title":"The Convergence of Antibiotic Contamination, Resistance, and Climate Dynamics in Freshwater Ecosystems","authors":"Marcelo Pedrosa Gomes","doi":"10.3390/w16182606","DOIUrl":null,"url":null,"abstract":"The convergence of antibiotic contamination, antimicrobial resistance (AMR), and climate dynamics poses a critical environmental and public health challenge. Freshwater ecosystems are increasingly threatened by the persistent presence of antibiotics, which, coupled with rising global temperatures, accelerate the development and spread of AMR. This review examines the sources, pathways, and mechanisms through which antibiotics enter freshwater systems and how climate change exacerbates these processes. This review discusses this convergence’s ecological and human health impacts, highlighting the implications for biodiversity and public health. It also explored the current monitoring and mitigation strategies, including advanced oxidation processes, natural-based solutions, and policy interventions. Finally, this review identifies critical research gaps and proposes future directions for managing the intertwined threats of antibiotic contamination, resistance, and climate change. It emphasizes the need for integrated, multidisciplinary approaches to protect freshwater resources in an increasingly volatile global environment.","PeriodicalId":23788,"journal":{"name":"Water","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/w16182606","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The convergence of antibiotic contamination, antimicrobial resistance (AMR), and climate dynamics poses a critical environmental and public health challenge. Freshwater ecosystems are increasingly threatened by the persistent presence of antibiotics, which, coupled with rising global temperatures, accelerate the development and spread of AMR. This review examines the sources, pathways, and mechanisms through which antibiotics enter freshwater systems and how climate change exacerbates these processes. This review discusses this convergence’s ecological and human health impacts, highlighting the implications for biodiversity and public health. It also explored the current monitoring and mitigation strategies, including advanced oxidation processes, natural-based solutions, and policy interventions. Finally, this review identifies critical research gaps and proposes future directions for managing the intertwined threats of antibiotic contamination, resistance, and climate change. It emphasizes the need for integrated, multidisciplinary approaches to protect freshwater resources in an increasingly volatile global environment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
淡水生态系统中抗生素污染、抗药性和气候动态的融合
抗生素污染、抗菌药耐药性(AMR)和气候动态的交汇构成了严峻的环境和公共卫生挑战。淡水生态系统正日益受到抗生素持续存在的威胁,而抗生素的存在加上全球气温的升高,加速了 AMR 的发展和传播。本综述探讨了抗生素进入淡水系统的来源、途径和机制,以及气候变化如何加剧这些过程。本综述讨论了这种融合对生态和人类健康的影响,强调了对生物多样性和公共卫生的影响。它还探讨了当前的监测和缓解策略,包括高级氧化过程、基于自然的解决方案和政策干预。最后,本综述指出了关键的研究缺口,并提出了管理抗生素污染、抗药性和气候变化等相互交织的威胁的未来方向。它强调了在日益动荡的全球环境中保护淡水资源需要综合、多学科的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Water
Water WATER RESOURCES-
CiteScore
5.80
自引率
14.70%
发文量
3491
审稿时长
19.85 days
期刊介绍: Water (ISSN 2073-4441) is an international and cross-disciplinary scholarly journal covering all aspects of water including water science and technology, and the hydrology, ecology and management of water resources. It publishes regular research papers, critical reviews and short communications, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
期刊最新文献
Study on Large-Scale Urban Water Distribution Network Computation Method Based on a GPU Framework Land-Use Pattern-Based Spatial Variation of Physicochemical Parameters and Efficacy of Safe Drinking Water Supply along the Mahaweli River, Sri Lanka Ensuring the Safety of an Extraction Well from an Upgradient Point Source of Pollution in a Computationally Constrained Setting The Impact of Catastrophic Floods on Macroinvertebrate Communities in Low-Order Streams: A Study from the Apennines (Northwest Italy) Characterization of Wastewater in an Activated Sludge Treatment Plant of the Food Sector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1