Time Series Analysis to Estimate the Volume of Drinking Water Consumption in the City of Meoqui, Chihuahua, Mexico

IF 3 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Water Pub Date : 2024-09-17 DOI:10.3390/w16182634
Martín Alfredo Legarreta-González, César A. Meza-Herrera, Rafael Rodríguez-Martínez, Carlos Servando Chávez-Tiznado, Francisco Gerardo Véliz-Deras
{"title":"Time Series Analysis to Estimate the Volume of Drinking Water Consumption in the City of Meoqui, Chihuahua, Mexico","authors":"Martín Alfredo Legarreta-González, César A. Meza-Herrera, Rafael Rodríguez-Martínez, Carlos Servando Chávez-Tiznado, Francisco Gerardo Véliz-Deras","doi":"10.3390/w16182634","DOIUrl":null,"url":null,"abstract":"Water is a vital resource for sustaining life and for numerous processes within the transformation industry. It is a finite resource, albeit one that can be renewed, and thus sustainable management is imperative. To achieve this objective, it is necessary to have the appropriate tools to assist with the planning policies for its management. This paper presents a time series analysis approach to measure and predict the pattern of water consumption by humans throughout subsectors (domestic, commercial, public sector, education, industry, and raw water) and total water consumption in Meoqui, Chihuahua, Mexico with data from 2011 to 2023, applying calibration model techniques to measure uncertainty in the forecasting. The municipality of Meoqui encompasses an area of 342 km2. The climate is semi-arid, with an average annual rainfall of 272 mm and average temperatures of 26.4 °C in summer and 9.7 °C in winter. The municipal seat, which has a population of 23,140, is supplied with water from ten wells, with an average consumption of 20 ± 579 m3 per user. The consumption of the general population indicates the existence of a seasonal autoregressive integrated moving average (SARIMA) (0,1,2)(0,0,2)12 model. (Sen’s Slope = 682.7, p < 0.001). The domestic sector exhibited the highest overall consumption, with a total volume of 17,169,009 m3 (13 ± 93). A SARIMA (2,1,0)(2,0,0)12 model was estimated, with a Sen’s slope of 221.65 and a p-value of less than 0.001. The second-largest consumer of total water was the “raw water” sector, which consumed 5,124,795 (30,146 ± 35,841) m3 and exhibited an SARIMA (0,1,1)(2,0,0)12 model with no statistically significant trend. The resulting models will facilitate the company’s ability to define water resource management strategies in a sustainable manner, in alignment with projected consumption trends.","PeriodicalId":23788,"journal":{"name":"Water","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/w16182634","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Water is a vital resource for sustaining life and for numerous processes within the transformation industry. It is a finite resource, albeit one that can be renewed, and thus sustainable management is imperative. To achieve this objective, it is necessary to have the appropriate tools to assist with the planning policies for its management. This paper presents a time series analysis approach to measure and predict the pattern of water consumption by humans throughout subsectors (domestic, commercial, public sector, education, industry, and raw water) and total water consumption in Meoqui, Chihuahua, Mexico with data from 2011 to 2023, applying calibration model techniques to measure uncertainty in the forecasting. The municipality of Meoqui encompasses an area of 342 km2. The climate is semi-arid, with an average annual rainfall of 272 mm and average temperatures of 26.4 °C in summer and 9.7 °C in winter. The municipal seat, which has a population of 23,140, is supplied with water from ten wells, with an average consumption of 20 ± 579 m3 per user. The consumption of the general population indicates the existence of a seasonal autoregressive integrated moving average (SARIMA) (0,1,2)(0,0,2)12 model. (Sen’s Slope = 682.7, p < 0.001). The domestic sector exhibited the highest overall consumption, with a total volume of 17,169,009 m3 (13 ± 93). A SARIMA (2,1,0)(2,0,0)12 model was estimated, with a Sen’s slope of 221.65 and a p-value of less than 0.001. The second-largest consumer of total water was the “raw water” sector, which consumed 5,124,795 (30,146 ± 35,841) m3 and exhibited an SARIMA (0,1,1)(2,0,0)12 model with no statistically significant trend. The resulting models will facilitate the company’s ability to define water resource management strategies in a sustainable manner, in alignment with projected consumption trends.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过时间序列分析估算墨西哥奇瓦瓦州梅奥基市的饮用水消耗量
水是维持生命的重要资源,也是转型工业众多流程的重要资源。尽管它可以再生,但却是一种有限的资源,因此必须进行可持续管理。为了实现这一目标,有必要使用适当的工具来协助制定水资源管理的规划政策。本文介绍了一种时间序列分析方法,利用 2011 年至 2023 年的数据测量和预测墨西哥奇瓦瓦州梅奥基市各子行业(家庭、商业、公共部门、教育、工业和原水)的人类用水模式和总用水量,并应用校准模型技术测量预测中的不确定性。梅奥基市面积为 342 平方公里。这里属于半干旱气候,年平均降雨量为 272 毫米,夏季平均气温为 26.4 °C,冬季平均气温为 9.7 °C。该市人口为 23 140 人,由 10 口水井供水,每个用户的平均用水量为 20±579 立方米。普通居民的用水量表明存在一个季节性自回归综合移动平均(SARIMA)(0,1,2)(0,0,2)12 模型。(森氏斜率 = 682.7,p < 0.001)。国内部门的总消费量最高,为 17 169 009 立方米(13 ± 93)。估计的 SARIMA (2,1,0)(2,0,0)12 模型的森斜率为 221.65,P 值小于 0.001。总耗水量第二大的行业是 "原水 "行业,耗水量为 5,124,795 (30,146 ± 35,841) 立方米,其 SARIMA (0,1,1)(2,0,0)12 模型在统计上没有显著趋势。由此产生的模型将有助于公司根据预计的消耗趋势,以可持续的方式制定水资源管理战略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Water
Water WATER RESOURCES-
CiteScore
5.80
自引率
14.70%
发文量
3491
审稿时长
19.85 days
期刊介绍: Water (ISSN 2073-4441) is an international and cross-disciplinary scholarly journal covering all aspects of water including water science and technology, and the hydrology, ecology and management of water resources. It publishes regular research papers, critical reviews and short communications, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
期刊最新文献
Study on Large-Scale Urban Water Distribution Network Computation Method Based on a GPU Framework Land-Use Pattern-Based Spatial Variation of Physicochemical Parameters and Efficacy of Safe Drinking Water Supply along the Mahaweli River, Sri Lanka Ensuring the Safety of an Extraction Well from an Upgradient Point Source of Pollution in a Computationally Constrained Setting The Impact of Catastrophic Floods on Macroinvertebrate Communities in Low-Order Streams: A Study from the Apennines (Northwest Italy) Characterization of Wastewater in an Activated Sludge Treatment Plant of the Food Sector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1