{"title":"Machine Learning Algorithms for Water Quality Management Using Total Dissolved Solids (TDS) Data Analysis","authors":"Julio Garcia, Joonghyeok Heo, Cheolhong Kim","doi":"10.3390/w16182639","DOIUrl":null,"url":null,"abstract":"Our research project specifically focuses on evaluating groundwater quality in six West Texas counties. We aim to determine whether environmental changes have any impact on the levels of Total Dissolved Solids (TDS) in the water supplied to the public. To achieve this goal, we will be utilizing advanced machine learning algorithms to analyze TDS levels and create geospatial maps for each year between the 1990s and 2010s. To ensure the accuracy of our data, we have gathered information from two trusted sources: the Texas Water Development Board (TWDB) and the Groundwater Database (GWDB). We have analyzed the TDS and other elemental analyses from TWDB–GWDB lab reports and compared them with the quality cutoff set by the World Health Organization (WHO). Our approach involves a thorough examination of the data to identify any emerging patterns. The machine learning algorithm has been successfully trained and tested, producing highly accurate results that effectively predict water quality. Our results have been validated through extensive testing, highlighting the potential of machine learning approaches in the fields of environmental research. Overall, our findings will contribute to the development of more effective policies and regulations in predicting groundwater quality and improving water resource management in Texas. Therefore, this research provides important information for groundwater protection and the development of plans for water resource use in the future.","PeriodicalId":23788,"journal":{"name":"Water","volume":"15 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/w16182639","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Our research project specifically focuses on evaluating groundwater quality in six West Texas counties. We aim to determine whether environmental changes have any impact on the levels of Total Dissolved Solids (TDS) in the water supplied to the public. To achieve this goal, we will be utilizing advanced machine learning algorithms to analyze TDS levels and create geospatial maps for each year between the 1990s and 2010s. To ensure the accuracy of our data, we have gathered information from two trusted sources: the Texas Water Development Board (TWDB) and the Groundwater Database (GWDB). We have analyzed the TDS and other elemental analyses from TWDB–GWDB lab reports and compared them with the quality cutoff set by the World Health Organization (WHO). Our approach involves a thorough examination of the data to identify any emerging patterns. The machine learning algorithm has been successfully trained and tested, producing highly accurate results that effectively predict water quality. Our results have been validated through extensive testing, highlighting the potential of machine learning approaches in the fields of environmental research. Overall, our findings will contribute to the development of more effective policies and regulations in predicting groundwater quality and improving water resource management in Texas. Therefore, this research provides important information for groundwater protection and the development of plans for water resource use in the future.
期刊介绍:
Water (ISSN 2073-4441) is an international and cross-disciplinary scholarly journal covering all aspects of water including water science and technology, and the hydrology, ecology and management of water resources. It publishes regular research papers, critical reviews and short communications, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.