What Is Relatively Permanent? Flow Regimes of Arizona Streams within the Context of the 2023 Conforming Rule on the Revised Definition of “Waters of the United States”
Jason P. Julian, Courtney Stuhldreher, Madeline T. Wade
{"title":"What Is Relatively Permanent? Flow Regimes of Arizona Streams within the Context of the 2023 Conforming Rule on the Revised Definition of “Waters of the United States”","authors":"Jason P. Julian, Courtney Stuhldreher, Madeline T. Wade","doi":"10.3390/w16182641","DOIUrl":null,"url":null,"abstract":"The classification of stream flow regimes has been a subject of study for over a half century in the fields of hydrology, geomorphology, ecology, and water resources management. But with the most recent Supreme Court decision on jurisdictional Waters of the United States (WOTUS) and the 2023 Conforming Rule, the answer to the question of which waters are relatively permanent has increased in importance and urgency. One state where this question is salient is Arizona, where approximately 95% of its streams are nonperennial. In this study, we use long-term (> 30 years) daily discharge records from Arizona to assess semi-natural flow regimes of arid streams within the context of the 2023 Conforming Rule. Using flow percentile distributions, we distinguished flow permanency—ephemeral vs. intermittent vs. perennial—for 70 stream reaches distributed throughout the state. Ephemeral streams had a median flow of 0 cms and a 75th percentile flow permanence less than 25% (i.e., less than 3 months of flow for every 7.5 out of 10 years). On the other end of the spectrum, perennial streams had a 90th percentile flow permanence of 100%. In the middle, intermittent streams had a 75th percentile flow permanence greater than 25% and a 90th percentile flow permanence less than 100%. We also assessed the effect of the recent megadrought (since 1994) on flow permanency. As a result of the megadrought, four perennial streams transitioned to intermittent, four intermittent streams transitioned to ephemeral, and one perennial stream became ephemeral. The flow classification we present here is specific to Arizona streams but could be useful to other arid regions seeking to answer the question of which streams are relatively permanent in a typical year.","PeriodicalId":23788,"journal":{"name":"Water","volume":"16 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/w16182641","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The classification of stream flow regimes has been a subject of study for over a half century in the fields of hydrology, geomorphology, ecology, and water resources management. But with the most recent Supreme Court decision on jurisdictional Waters of the United States (WOTUS) and the 2023 Conforming Rule, the answer to the question of which waters are relatively permanent has increased in importance and urgency. One state where this question is salient is Arizona, where approximately 95% of its streams are nonperennial. In this study, we use long-term (> 30 years) daily discharge records from Arizona to assess semi-natural flow regimes of arid streams within the context of the 2023 Conforming Rule. Using flow percentile distributions, we distinguished flow permanency—ephemeral vs. intermittent vs. perennial—for 70 stream reaches distributed throughout the state. Ephemeral streams had a median flow of 0 cms and a 75th percentile flow permanence less than 25% (i.e., less than 3 months of flow for every 7.5 out of 10 years). On the other end of the spectrum, perennial streams had a 90th percentile flow permanence of 100%. In the middle, intermittent streams had a 75th percentile flow permanence greater than 25% and a 90th percentile flow permanence less than 100%. We also assessed the effect of the recent megadrought (since 1994) on flow permanency. As a result of the megadrought, four perennial streams transitioned to intermittent, four intermittent streams transitioned to ephemeral, and one perennial stream became ephemeral. The flow classification we present here is specific to Arizona streams but could be useful to other arid regions seeking to answer the question of which streams are relatively permanent in a typical year.
期刊介绍:
Water (ISSN 2073-4441) is an international and cross-disciplinary scholarly journal covering all aspects of water including water science and technology, and the hydrology, ecology and management of water resources. It publishes regular research papers, critical reviews and short communications, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.