Protonation/deprotonation-driven switch for the redox stability of low-potential [4Fe-4S] ferredoxin

Kei Wada, Kenji Kobayashi, Iori Era, Yusuke Isobe, Taigo Kamimura, Masaki Marukawa, Takayuki Nagae, Kazuki Honjo, Noriko Kaseda, Yumiko Motoyama, Kengo Inoue, Masakazu Sugishima, Katsuhiro Kusaka, Naomine Yano, Keiichi Fukuyama, Masaki Mishima, Yasutaka Kitagawa, Masaki Unno
{"title":"Protonation/deprotonation-driven switch for the redox stability of low-potential [4Fe-4S] ferredoxin","authors":"Kei Wada, Kenji Kobayashi, Iori Era, Yusuke Isobe, Taigo Kamimura, Masaki Marukawa, Takayuki Nagae, Kazuki Honjo, Noriko Kaseda, Yumiko Motoyama, Kengo Inoue, Masakazu Sugishima, Katsuhiro Kusaka, Naomine Yano, Keiichi Fukuyama, Masaki Mishima, Yasutaka Kitagawa, Masaki Unno","doi":"10.1101/2024.09.12.612615","DOIUrl":null,"url":null,"abstract":"Ferredoxin is a small iron-sulfur protein and acts as an electron carrier. Low-potential ferredoxins harbor [4Fe-4S] cluster(s), which play(s) a crucial role as the redox center. Low-potential ferredoxins are able to cover a wide range of redox potentials (-700 to -200 mV); however, the mechanisms underlying the factors which control the redox potential are still enigmatic. Here, we determined the neutron structure of ferredoxin from Bacillus thermoproteolyticus, and experimentally revealed the exact hydrogen-bonding network involving the [4Fe-4S] cluster. The density functional theory calculations based on the hydrogen-bonding network revealed that protonation states of the sidechain of Asp64 close to the [4Fe-4S] cluster critically affected the stability of the reduced state in the cluster. These findings provide the first identification of the intrinsic control factor of redox potential for the [4Fe-4S] cluster in low-potential ferredoxins.","PeriodicalId":501147,"journal":{"name":"bioRxiv - Biochemistry","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.12.612615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ferredoxin is a small iron-sulfur protein and acts as an electron carrier. Low-potential ferredoxins harbor [4Fe-4S] cluster(s), which play(s) a crucial role as the redox center. Low-potential ferredoxins are able to cover a wide range of redox potentials (-700 to -200 mV); however, the mechanisms underlying the factors which control the redox potential are still enigmatic. Here, we determined the neutron structure of ferredoxin from Bacillus thermoproteolyticus, and experimentally revealed the exact hydrogen-bonding network involving the [4Fe-4S] cluster. The density functional theory calculations based on the hydrogen-bonding network revealed that protonation states of the sidechain of Asp64 close to the [4Fe-4S] cluster critically affected the stability of the reduced state in the cluster. These findings provide the first identification of the intrinsic control factor of redox potential for the [4Fe-4S] cluster in low-potential ferredoxins.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低电位 [4Fe-4S] ferredoxin 氧化还原稳定性的质子化/去质子化驱动开关
铁氧还蛋白是一种小型铁硫蛋白,是一种电子载体。低电位铁氧还蛋白含有[4Fe-4S]团簇,作为氧化还原中心发挥着重要作用。低电位铁氧还蛋白能够覆盖很宽的氧化还原电位范围(-700 至 -200 mV);然而,控制氧化还原电位的因素的机制仍然是个谜。在此,我们测定了热溶血性芽孢杆菌中铁毒素的中子结构,并通过实验揭示了涉及[4Fe-4S]团簇的确切氢键网络。基于氢键网络的密度泛函理论计算显示,靠近[4Fe-4S]簇的 Asp64 侧链的质子化状态对簇中还原态的稳定性有重要影响。这些发现首次确定了低电位铁毒素中[4Fe-4S]团簇氧化还原电位的内在控制因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cytosolic CRISPR RNA for RNA-targeting CRISPR-Cas systems Molecular activity mediates the composition and assembly of dissolved organic matter in lake sediments Structural insights into terminal arabinosylation biosynthesis of the mycobacterial cell wall arabinan Mechanistic studies of mycobacterial glycolipid biosynthesis by the mannosyltransferase PimE Affinity tag free purification of SARS-Cov-2 N protein and its crystal structure in complex with ssDNA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1