Self-Supervised Learning for Rolling Shutter Temporal Super-Resolution

IF 11.1 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Circuits and Systems for Video Technology Pub Date : 2024-09-17 DOI:10.1109/TCSVT.2024.3462520
Bin Fan;Ying Guo;Yuchao Dai;Chao Xu;Boxin Shi
{"title":"Self-Supervised Learning for Rolling Shutter Temporal Super-Resolution","authors":"Bin Fan;Ying Guo;Yuchao Dai;Chao Xu;Boxin Shi","doi":"10.1109/TCSVT.2024.3462520","DOIUrl":null,"url":null,"abstract":"Most cameras on portable devices adopt a rolling shutter (RS) mechanism, encoding sufficient temporal dynamic information through sequential readouts. This advantage can be exploited to recover a temporal sequence of latent global shutter (GS) images. Existing methods rely on fully supervised learning, necessitating specialized optical devices to collect paired RS-GS images as ground-truth, which is too costly to scale. In this paper, we propose a self-supervised learning framework for the first time to produce a high frame rate GS video from two consecutive RS images, unleashing the potential of RS cameras. Specifically, we first develop the unified warping model of RS2GS and GS2RS, enabling the complement conversions of RS2GS and GS2RS to be incorporated into a uniform network model. Then, based on the cycle consistency constraint, given a triplet of consecutive RS frames, we minimize the discrepancy between the input middle RS frame and its cycle reconstruction, generated by interpolating back from the predicted two intermediate GS frames. Experiments on various benchmarks show that our approach achieves comparable or better performance than state-of-the-art supervised methods while enjoying stronger generalization capabilities. Moreover, our approach makes it possible to recover smooth and distortion-free videos from two adjacent RS frames in the real-world BS-RSC dataset, surpassing prior limitations.","PeriodicalId":13082,"journal":{"name":"IEEE Transactions on Circuits and Systems for Video Technology","volume":"35 1","pages":"769-782"},"PeriodicalIF":11.1000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems for Video Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10681568/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Most cameras on portable devices adopt a rolling shutter (RS) mechanism, encoding sufficient temporal dynamic information through sequential readouts. This advantage can be exploited to recover a temporal sequence of latent global shutter (GS) images. Existing methods rely on fully supervised learning, necessitating specialized optical devices to collect paired RS-GS images as ground-truth, which is too costly to scale. In this paper, we propose a self-supervised learning framework for the first time to produce a high frame rate GS video from two consecutive RS images, unleashing the potential of RS cameras. Specifically, we first develop the unified warping model of RS2GS and GS2RS, enabling the complement conversions of RS2GS and GS2RS to be incorporated into a uniform network model. Then, based on the cycle consistency constraint, given a triplet of consecutive RS frames, we minimize the discrepancy between the input middle RS frame and its cycle reconstruction, generated by interpolating back from the predicted two intermediate GS frames. Experiments on various benchmarks show that our approach achieves comparable or better performance than state-of-the-art supervised methods while enjoying stronger generalization capabilities. Moreover, our approach makes it possible to recover smooth and distortion-free videos from two adjacent RS frames in the real-world BS-RSC dataset, surpassing prior limitations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
卷帘快门时空超分辨率的自监督学习
便携式设备上的大多数相机采用滚动快门(RS)机制,通过顺序读出编码足够的时间动态信息。这一优势可以用来恢复潜在的全局快门(GS)图像的时间序列。现有的方法依赖于完全监督学习,需要专门的光学设备来收集成对的RS-GS图像作为地面事实,这太昂贵而无法扩展。在本文中,我们首次提出了一个自监督学习框架,从两个连续的RS图像中生成高帧率的GS视频,释放RS相机的潜力。具体而言,我们首先建立了RS2GS和GS2RS的统一翘曲模型,使RS2GS和GS2RS的互补转换能够纳入一个统一的网络模型。然后,基于周期一致性约束,给定一个连续RS帧的三联体,我们最小化输入中间RS帧与其周期重建之间的差异,该周期重建是由预测的两个中间GS帧插值回生成的。在各种基准测试上的实验表明,我们的方法在具有更强泛化能力的同时,取得了与最先进的监督方法相当或更好的性能。此外,我们的方法使得从现实世界BS-RSC数据集中的两个相邻RS帧中恢复平滑和无失真的视频成为可能,超越了先前的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
13.80
自引率
27.40%
发文量
660
审稿时长
5 months
期刊介绍: The IEEE Transactions on Circuits and Systems for Video Technology (TCSVT) is dedicated to covering all aspects of video technologies from a circuits and systems perspective. We encourage submissions of general, theoretical, and application-oriented papers related to image and video acquisition, representation, presentation, and display. Additionally, we welcome contributions in areas such as processing, filtering, and transforms; analysis and synthesis; learning and understanding; compression, transmission, communication, and networking; as well as storage, retrieval, indexing, and search. Furthermore, papers focusing on hardware and software design and implementation are highly valued. Join us in advancing the field of video technology through innovative research and insights.
期刊最新文献
IEEE Circuits and Systems Society Information IEEE Circuits and Systems Society Information 2025 Index IEEE Transactions on Circuits and Systems for Video Technology IEEE Circuits and Systems Society Information IEEE Circuits and Systems Society Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1