Maltodextrin Transport in the Extremely Thermophilic, Lignocellulose Degrading Bacterium Anaerocellum bescii (f. Caldicellulosiruptor bescii)

Hansen Tjo, Virginia Jiang, Jerelle A Joseph, Jonathan M Conway
{"title":"Maltodextrin Transport in the Extremely Thermophilic, Lignocellulose Degrading Bacterium Anaerocellum bescii (f. Caldicellulosiruptor bescii)","authors":"Hansen Tjo, Virginia Jiang, Jerelle A Joseph, Jonathan M Conway","doi":"10.1101/2024.09.14.613025","DOIUrl":null,"url":null,"abstract":"Sugar transport into microbial cells is a critical, yet understudied step in the conversion of lignocellulosic biomass to metabolic products. Anaerocellum bescii (formerly Caldicellulosiruptor bescii) is an extremely thermophilic, anaerobic bacterium that readily degrades the cellulose and hemicellulose components of lignocellulosic biomass into a diversity of oligosaccharide substrates. Despite significant understanding of how this microorganism degrades lignocellulose, the mechanisms underlying its highly efficient transport of the resulting oligosaccharides into the cell are comparatively underexplored. Here, we identify and characterize the ATP-Binding Cassette (ABC) transporters in A. bescii governing maltodextrin transport. Utilizing past transcriptomic studies on Anaerocellum and Caldicellulosiruptor species, we identify two maltodextrin transporters in A. bescii and express and purify their substrate-binding proteins (Athe_2310 and Athe_2574) for characterization. Using differential scanning calorimetry and isothermal titration calorimetry, we show that Athe_2310 strongly interacts with shorter maltodextrins such as maltose and trehalose with dissociation constants in the micromolar range, while Athe_2574 binds longer maltodextrins, with dissociation constants in the sub-micro molar range. Using a sequence-structure-function comparison approach combined with molecular modeling we provide context for the specificity of each of these substrate-binding proteins. We propose that A. bescii utilizes orthogonal ABC transporters to uptake malto-oligosaccharides of different lengths to maximize transport efficiency.","PeriodicalId":501048,"journal":{"name":"bioRxiv - Biophysics","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.14.613025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sugar transport into microbial cells is a critical, yet understudied step in the conversion of lignocellulosic biomass to metabolic products. Anaerocellum bescii (formerly Caldicellulosiruptor bescii) is an extremely thermophilic, anaerobic bacterium that readily degrades the cellulose and hemicellulose components of lignocellulosic biomass into a diversity of oligosaccharide substrates. Despite significant understanding of how this microorganism degrades lignocellulose, the mechanisms underlying its highly efficient transport of the resulting oligosaccharides into the cell are comparatively underexplored. Here, we identify and characterize the ATP-Binding Cassette (ABC) transporters in A. bescii governing maltodextrin transport. Utilizing past transcriptomic studies on Anaerocellum and Caldicellulosiruptor species, we identify two maltodextrin transporters in A. bescii and express and purify their substrate-binding proteins (Athe_2310 and Athe_2574) for characterization. Using differential scanning calorimetry and isothermal titration calorimetry, we show that Athe_2310 strongly interacts with shorter maltodextrins such as maltose and trehalose with dissociation constants in the micromolar range, while Athe_2574 binds longer maltodextrins, with dissociation constants in the sub-micro molar range. Using a sequence-structure-function comparison approach combined with molecular modeling we provide context for the specificity of each of these substrate-binding proteins. We propose that A. bescii utilizes orthogonal ABC transporters to uptake malto-oligosaccharides of different lengths to maximize transport efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
极嗜热木质纤维素降解细菌 Anaerocellum bescii(f. Caldicellulosiruptor bescii)中的麦芽糊精迁移
在木质纤维素生物质转化为代谢产物的过程中,糖分输送到微生物细胞中是一个关键步骤,但对这一步骤的研究却不够深入。Anaerocellum bescii(原名 Caldicellulosiruptor bescii)是一种嗜热性极强的厌氧细菌,它能轻易地将木质纤维素生物质中的纤维素和半纤维素成分降解为多种寡糖底物。尽管人们对这种微生物如何降解木质纤维素有了深入了解,但对其将降解后的低聚糖高效转运到细胞中的机制却相对缺乏探索。在这里,我们鉴定并描述了 A. bescii 中管理麦芽糊精转运的 ATP 结合盒(ABC)转运体。利用过去对 Anaerocellum 和 Caldicellulosiruptor 物种进行的转录组学研究,我们确定了 A. bescii 中的两种麦芽糊精转运体,并表达和纯化了它们的底物结合蛋白(Athe_2310 和 Athe_2574)以进行表征。利用差示扫描量热法和等温滴定量热法,我们发现 Athe_2310 与较短的麦芽糊精(如麦芽糖和曲哈糖)有强烈的相互作用,解离常数在微摩尔范围内;而 Athe_2574 与较长的麦芽糊精结合,解离常数在亚微摩尔范围内。我们采用序列-结构-功能比较法并结合分子建模,为这些底物结合蛋白的特异性提供了背景。我们提出,贝西虫利用正交 ABC 转运体吸收不同长度的麦芽寡糖,以最大限度地提高转运效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
De-novo design of actively spinning and gyrating spherical micro-vesicles Localization of Albumin with Correlative Super Resolution Light- and Electron Microscopy in the Kidney Mechanical Profiling of Biopolymer Condensates through Acoustic Trapping Unlocking precision: How corneal cell area analysis revolutionises post-transplant stem cell monitoring A combined approach to extract rotational dynamics of globular proteins undergoing liquid-liquid phase separation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1