Targeting SNRNP200-induced splicing dysregulation offers an immunotherapy opportunity for glycolytic triple-negative breast cancer

IF 13 1区 生物学 Q1 CELL BIOLOGY Cell Discovery Pub Date : 2024-09-17 DOI:10.1038/s41421-024-00715-7
Wenxiao Yang, Luo Hong, Linwei Guo, Yunjin Wang, Xiangchen Han, Boyue Han, Zheng Xing, Guoliang Zhang, Hongxia Zhou, Chao Chen, Hong Ling, Zhimin Shao, Xin Hu
{"title":"Targeting SNRNP200-induced splicing dysregulation offers an immunotherapy opportunity for glycolytic triple-negative breast cancer","authors":"Wenxiao Yang, Luo Hong, Linwei Guo, Yunjin Wang, Xiangchen Han, Boyue Han, Zheng Xing, Guoliang Zhang, Hongxia Zhou, Chao Chen, Hong Ling, Zhimin Shao, Xin Hu","doi":"10.1038/s41421-024-00715-7","DOIUrl":null,"url":null,"abstract":"<p>Metabolic dysregulation is prominent in triple-negative breast cancer (TNBC), yet therapeutic strategies targeting cancer metabolism are limited. Here, utilizing multiomics data from our TNBC cohort (<i>n</i> = 465), we demonstrated widespread splicing deregulation and increased spliceosome abundance in the glycolytic TNBC subtype. We identified SNRNP200 as a crucial mediator of glucose-driven metabolic reprogramming. Mechanistically, glucose induces acetylation at SNRNP200 K1610, preventing its proteasomal degradation. Augmented SNRNP200 then facilitates splicing key metabolic enzyme-encoding genes (<i>GAPDH</i>, <i>ALDOA</i>, and <i>GSS</i>), leading to increased lactic acid and glutathione production. Targeting SNRNP200 with antisense oligonucleotide therapy impedes tumor metabolism and enhances the efficacy of anti-PD-1 therapy by activating intratumoral CD8<sup>+</sup> T cells while suppressing regulatory T cells. Clinically, higher SNRNP200 levels indicate an inferior response to immunotherapy in glycolytic TNBCs. Overall, our study revealed the intricate interplay between RNA splicing and metabolic dysregulation, suggesting an innovative combination strategy for immunotherapy in glycolytic TNBCs.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"16 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Discovery","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41421-024-00715-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Metabolic dysregulation is prominent in triple-negative breast cancer (TNBC), yet therapeutic strategies targeting cancer metabolism are limited. Here, utilizing multiomics data from our TNBC cohort (n = 465), we demonstrated widespread splicing deregulation and increased spliceosome abundance in the glycolytic TNBC subtype. We identified SNRNP200 as a crucial mediator of glucose-driven metabolic reprogramming. Mechanistically, glucose induces acetylation at SNRNP200 K1610, preventing its proteasomal degradation. Augmented SNRNP200 then facilitates splicing key metabolic enzyme-encoding genes (GAPDH, ALDOA, and GSS), leading to increased lactic acid and glutathione production. Targeting SNRNP200 with antisense oligonucleotide therapy impedes tumor metabolism and enhances the efficacy of anti-PD-1 therapy by activating intratumoral CD8+ T cells while suppressing regulatory T cells. Clinically, higher SNRNP200 levels indicate an inferior response to immunotherapy in glycolytic TNBCs. Overall, our study revealed the intricate interplay between RNA splicing and metabolic dysregulation, suggesting an innovative combination strategy for immunotherapy in glycolytic TNBCs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以 SNRNP200 诱导的剪接失调为靶点,为糖代谢三阴性乳腺癌提供免疫疗法机会
代谢失调在三阴性乳腺癌(TNBC)中非常突出,但针对癌症代谢的治疗策略却很有限。在这里,我们利用 TNBC 队列(n = 465)的多组学数据,证明了在糖酵解 TNBC 亚型中广泛存在剪接失调和剪接体丰度增加的现象。我们发现 SNRNP200 是葡萄糖驱动的代谢重编程的关键介质。从机理上讲,葡萄糖会诱导 SNRNP200 K1610 处的乙酰化,阻止其蛋白酶体降解。增强的 SNRNP200 会促进关键代谢酶编码基因(GAPDH、ALDOA 和 GSS)的剪接,从而增加乳酸和谷胱甘肽的产生。以 SNRNP200 为靶点的反义寡核苷酸疗法会阻碍肿瘤的新陈代谢,并通过激活瘤内 CD8+ T 细胞同时抑制调节性 T 细胞来提高抗 PD-1 疗法的疗效。在临床上,SNRNP200水平越高,表明糖代谢性TNBC对免疫疗法的反应越差。总之,我们的研究揭示了RNA剪接与代谢失调之间错综复杂的相互作用,为糖代谢性TNBCs的免疫疗法提出了一种创新的组合策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Discovery
Cell Discovery Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
24.20
自引率
0.60%
发文量
120
审稿时长
20 weeks
期刊介绍: Cell Discovery is a cutting-edge, open access journal published by Springer Nature in collaboration with the Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences (CAS). Our aim is to provide a dynamic and accessible platform for scientists to showcase their exceptional original research. Cell Discovery covers a wide range of topics within the fields of molecular and cell biology. We eagerly publish results of great significance and that are of broad interest to the scientific community. With an international authorship and a focus on basic life sciences, our journal is a valued member of Springer Nature's prestigious Molecular Cell Biology journals. In summary, Cell Discovery offers a fresh approach to scholarly publishing, enabling scientists from around the world to share their exceptional findings in molecular and cell biology.
期刊最新文献
Apaf-1 is an evolutionarily conserved DNA sensor that switches the cell fate between apoptosis and inflammation. Droplet-based high-throughput 3D genome structure mapping of single cells with simultaneous transcriptomics. Generation of live mice from haploid ESCs with germline-DMR deletions or switch. Structure of small HBV surface antigen reveals mechanism of dimer formation. Ion channel traffic jams: the significance of trafficking deficiency in long QT syndrome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1