Redesigning glycolaldehyde synthase for the synthesis of biorefinery feedstock D-xylulose from C1 compounds

IF 3.2 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Biotechnology Journal Pub Date : 2024-09-19 DOI:10.1002/biot.202400360
Yue Yan, Haodong Zhao, Dingyu Liu, Jie Zhang, Yuwan Liu, Huifeng Jiang
{"title":"Redesigning glycolaldehyde synthase for the synthesis of biorefinery feedstock D-xylulose from C1 compounds","authors":"Yue Yan,&nbsp;Haodong Zhao,&nbsp;Dingyu Liu,&nbsp;Jie Zhang,&nbsp;Yuwan Liu,&nbsp;Huifeng Jiang","doi":"10.1002/biot.202400360","DOIUrl":null,"url":null,"abstract":"<p>Global climate deterioration intensifies the demand for exploiting efficient CO<sub>2</sub> utilization approaches. Converting CO<sub>2</sub> to biorefinery feedstock affords an alternative strategy for third-generation biorefineries. However, upcycling CO<sub>2</sub> into complex chiral carbohydrates remains a major challenge. Previous attempts at sugar synthesis from CO<sub>2</sub> either produce mixtures with poor stereoselectivity or require ATP as a cofactor. Here, by redesigning glycolaldehyde synthase, the authors constructed a synthetic pathway for biorefinery feedstock D-xylulose from CO<sub>2</sub> that does not require ATP as a cofactor. The artificial D-xylulose pathway only requires a three-step enzyme cascade reaction to achieve the stereoselective synthesis of D-xylulose at a concentration of 1.2 g L<sup>−1</sup>. Our research opens up an alternative route toward future production of chemicals and fuels from CO<sub>2</sub>.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 9","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biot.202400360","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Global climate deterioration intensifies the demand for exploiting efficient CO2 utilization approaches. Converting CO2 to biorefinery feedstock affords an alternative strategy for third-generation biorefineries. However, upcycling CO2 into complex chiral carbohydrates remains a major challenge. Previous attempts at sugar synthesis from CO2 either produce mixtures with poor stereoselectivity or require ATP as a cofactor. Here, by redesigning glycolaldehyde synthase, the authors constructed a synthetic pathway for biorefinery feedstock D-xylulose from CO2 that does not require ATP as a cofactor. The artificial D-xylulose pathway only requires a three-step enzyme cascade reaction to achieve the stereoselective synthesis of D-xylulose at a concentration of 1.2 g L−1. Our research opens up an alternative route toward future production of chemicals and fuels from CO2.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重新设计乙醛合成酶,从 C1 化合物中合成生物精炼原料 D-木酮糖。
全球气候恶化加剧了对二氧化碳高效利用方法的需求。将二氧化碳转化为生物精炼原料为第三代生物精炼厂提供了一种替代战略。然而,将二氧化碳转化为复杂的手性碳水化合物仍然是一项重大挑战。以前从二氧化碳合成糖的尝试要么产生的混合物立体选择性差,要么需要 ATP 作为辅助因子。在这里,作者通过重新设计乙醛合成酶,构建了一条不需要 ATP 作为辅助因子的从二氧化碳合成生物精炼原料 D-木酮糖的途径。人工 D-木酮糖途径只需要三步酶级联反应,就能在 1.2 g L-1 的浓度下实现 D-木酮糖的立体选择性合成。我们的研究为未来利用二氧化碳生产化学品和燃料开辟了另一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biotechnology Journal
Biotechnology Journal Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍: Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances. In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office. BTJ promotes a special emphasis on: Systems Biotechnology Synthetic Biology and Metabolic Engineering Nanobiotechnology and Biomaterials Tissue engineering, Regenerative Medicine and Stem cells Gene Editing, Gene therapy and Immunotherapy Omics technologies Industrial Biotechnology, Biopharmaceuticals and Biocatalysis Bioprocess engineering and Downstream processing Plant Biotechnology Biosafety, Biotech Ethics, Science Communication Methods and Advances.
期刊最新文献
Construction of a Cell Factory for the Targeted and Efficient Production of Phytosterol to Boldenone in Mycobacterium neoaurum L-Asparaginase from Lachancea Thermotolerans: Effect of Lys99Ala on Enzyme Performance and in vitro Antileukemic Efficacy Multifunctional PAMAM Dendrimers Carrying SAHA, 5-FU, and a Therapeutic Gene for Targeted Co-Delivery Toward Colorectal Cancer Cells An Experimental and Modeling Approach to Study Tangential Flow Filtration Performance for mRNA Drug Substance Purification Engineering Regioselectivity of P450 BM3 Enables the Biosynthesis of Murideoxycholic Acid by 6β-Hydroxylation of Lithocholic Acid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1