{"title":"Evaluation of the Long-Term Thermal–Mechanical Stability of an Embankment Replaced with Crushed Rocks in Cold Regions","authors":"Min Ma, Yuan Ma","doi":"10.1177/03611981241275547","DOIUrl":null,"url":null,"abstract":"Conventional measures of protecting permafrost cannot improve embankment stability in warm permafrost regions. Therefore, based on the principle of allowing permafrost to thaw, a method of replacing the 4.5 m underlying permafrost layer with 200–400 mm diameter crushed rocks was proposed to reduce embankment settlement. To evaluate the long-term stability of the embankment in question, a hydro-thermomechanical coupling model considering condensation is established for unsaturated frozen soil; the water, heat, and deformation conditions of the embankment in 20 service years are calculated; and its working mechanism is analyzed. In addition, the optimal replacement depth of the crushed rocks is discussed from thermodynamic and economic perspectives. The results show that: (1) an increase in replacement depth can increase the permafrost table under the embankment centerline, thus improving the thermal stability of the embankment; (2) the increase in replacement depth can reduce the unfrozen water content from the deep foundation to the embankment filling layer, thus reducing the cumulative settlement; (3) if only the embankment stability is considered, the embankment stability is better with the greater replacement depth. If both stability and economy are considered, a replacement depth of 4.0 m is the optimal solution. The maximum settlement, maximum horizontal deformation, maximum uneven settlement, and maximum horizontal deformation difference of this embankment are −0.693, −0.241, 0.306, and −0.358 cm. This study provides a reference for the settlement control of embankments and the optimal design of crushed-rock embankments in warm permafrost regions.","PeriodicalId":517391,"journal":{"name":"Transportation Research Record: Journal of the Transportation Research Board","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Record: Journal of the Transportation Research Board","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/03611981241275547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional measures of protecting permafrost cannot improve embankment stability in warm permafrost regions. Therefore, based on the principle of allowing permafrost to thaw, a method of replacing the 4.5 m underlying permafrost layer with 200–400 mm diameter crushed rocks was proposed to reduce embankment settlement. To evaluate the long-term stability of the embankment in question, a hydro-thermomechanical coupling model considering condensation is established for unsaturated frozen soil; the water, heat, and deformation conditions of the embankment in 20 service years are calculated; and its working mechanism is analyzed. In addition, the optimal replacement depth of the crushed rocks is discussed from thermodynamic and economic perspectives. The results show that: (1) an increase in replacement depth can increase the permafrost table under the embankment centerline, thus improving the thermal stability of the embankment; (2) the increase in replacement depth can reduce the unfrozen water content from the deep foundation to the embankment filling layer, thus reducing the cumulative settlement; (3) if only the embankment stability is considered, the embankment stability is better with the greater replacement depth. If both stability and economy are considered, a replacement depth of 4.0 m is the optimal solution. The maximum settlement, maximum horizontal deformation, maximum uneven settlement, and maximum horizontal deformation difference of this embankment are −0.693, −0.241, 0.306, and −0.358 cm. This study provides a reference for the settlement control of embankments and the optimal design of crushed-rock embankments in warm permafrost regions.