Investigating the effects of precise mass measurements of Ru and Pd isotopes on machine learning mass modeling

IF 3.1 2区 物理与天体物理 Q1 Physics and Astronomy Physical Review C Pub Date : 2024-09-18 DOI:10.1103/physrevc.110.034321
W. S. Porter, B. Liu, D. Ray, A. A. Valverde, M. Li, M. R. Mumpower, M. Brodeur, D. P. Burdette, N. Callahan, A. Cannon, J. A. Clark, D. E. M. Hoff, A. M. Houff, F. G. Kondev, A. E. Lovell, A. T. Mohan, G. E. Morgan, C. Quick, G. Savard, K. S. Sharma, T. M. Sprouse, L. Varriano
{"title":"Investigating the effects of precise mass measurements of Ru and Pd isotopes on machine learning mass modeling","authors":"W. S. Porter, B. Liu, D. Ray, A. A. Valverde, M. Li, M. R. Mumpower, M. Brodeur, D. P. Burdette, N. Callahan, A. Cannon, J. A. Clark, D. E. M. Hoff, A. M. Houff, F. G. Kondev, A. E. Lovell, A. T. Mohan, G. E. Morgan, C. Quick, G. Savard, K. S. Sharma, T. M. Sprouse, L. Varriano","doi":"10.1103/physrevc.110.034321","DOIUrl":null,"url":null,"abstract":"Atomic masses are a foundational quantity in our understanding of nuclear structure, astrophysics, and fundamental symmetries. The longstanding goal of creating a predictive global model for the binding energy of a nucleus remains a significant challenge, however, and prompts the need for precise measurements of atomic masses to serve as anchor points for model developments. We present precise mass measurements of neutron-rich Ru and Pd isotopes performed at the Californium Rare Isotope Breeder Upgrade facility at Argonne National Laboratory using the Canadian Penning Trap mass spectrometer. The masses of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi>Ru</mi><mprescripts></mprescripts><none></none><mn>108</mn></mmultiscripts><mo>,</mo><mo> </mo><mmultiscripts><mi>Ru</mi><mprescripts></mprescripts><none></none><mn>110</mn></mmultiscripts></math>, and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mmultiscripts><mi>Pd</mi><mprescripts></mprescripts><none></none><mn>116</mn></mmultiscripts></math> were measured to a relative mass precision <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>δ</mi><mi>m</mi><mo>/</mo><mi>m</mi><mo>≈</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>8</mn></mrow></msup></mrow></math> via the phase-imaging ion-cyclotron-resonance technique, and represent an improvement of approximately an order of magnitude over previous measurements. These mass data were used in conjunction with the physically interpretable machine learning (PIML) model, which uses a mixture density neural network to model mass excesses via a mixture of Gaussian distributions. The effects of our new mass data on a Bayesian-updating of a PIML model are presented.","PeriodicalId":20122,"journal":{"name":"Physical Review C","volume":"10 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review C","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevc.110.034321","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Atomic masses are a foundational quantity in our understanding of nuclear structure, astrophysics, and fundamental symmetries. The longstanding goal of creating a predictive global model for the binding energy of a nucleus remains a significant challenge, however, and prompts the need for precise measurements of atomic masses to serve as anchor points for model developments. We present precise mass measurements of neutron-rich Ru and Pd isotopes performed at the Californium Rare Isotope Breeder Upgrade facility at Argonne National Laboratory using the Canadian Penning Trap mass spectrometer. The masses of Ru108, Ru110, and Pd116 were measured to a relative mass precision δm/m108 via the phase-imaging ion-cyclotron-resonance technique, and represent an improvement of approximately an order of magnitude over previous measurements. These mass data were used in conjunction with the physically interpretable machine learning (PIML) model, which uses a mixture density neural network to model mass excesses via a mixture of Gaussian distributions. The effects of our new mass data on a Bayesian-updating of a PIML model are presented.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
研究 Ru 和 Pd 同位素的精确质量测量对机器学习质量建模的影响
原子质量是我们理解核结构、天体物理学和基本对称性的基础量。然而,为原子核结合能创建一个预测性全局模型的长期目标仍然是一个重大挑战,这也促使我们需要对原子质量进行精确测量,以作为模型开发的锚点。我们介绍了在阿贡国家实验室的加州稀有同位素育种升级设施中使用加拿大潘宁阱质谱仪对富含中子的 Ru 和 Pd 同位素进行的精确质量测量。通过相位成像离子-回旋共振技术测量了 Ru108、Ru110 和 Pd116 的质量,相对质量精度为 δm/m≈10-8,比以前的测量结果提高了大约一个数量级。这些质量数据与物理可解释机器学习(PIML)模型结合使用,该模型使用混合密度神经网络,通过高斯分布的混合来模拟质量过剩。本文介绍了新质量数据对贝叶斯更新 PIML 模型的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Review C
Physical Review C 物理-物理:核物理
CiteScore
5.70
自引率
35.50%
发文量
0
审稿时长
1-2 weeks
期刊介绍: Physical Review C (PRC) is a leading journal in theoretical and experimental nuclear physics, publishing more than two-thirds of the research literature in the field. PRC covers experimental and theoretical results in all aspects of nuclear physics, including: Nucleon-nucleon interaction, few-body systems Nuclear structure Nuclear reactions Relativistic nuclear collisions Hadronic physics and QCD Electroweak interaction, symmetries Nuclear astrophysics
期刊最新文献
Laser-assisted deuterium-tritium fusion: A quantum dynamical model Deformation probes for light nuclei in their collisions at relativistic energies Extraction of the microscopic properties of quasiparticles using deep neural networks Novel approach to infer the H2(p,γ)He3 angular distribution: Experimental results and comparison with theoretical calculations Lifetime measurement in Ru94 and Tc93 to investigate seniority conservation in the N=50 isotones
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1