Short-lived gravitational instability in isolated irradiated discs

IF 4.7 3区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Monthly Notices of the Royal Astronomical Society Pub Date : 2024-09-19 DOI:10.1093/mnras/stae2167
Sahl Rowther, Daniel J Price, Christophe Pinte, Rebecca Nealon, Farzana Meru, Richard Alexander
{"title":"Short-lived gravitational instability in isolated irradiated discs","authors":"Sahl Rowther, Daniel J Price, Christophe Pinte, Rebecca Nealon, Farzana Meru, Richard Alexander","doi":"10.1093/mnras/stae2167","DOIUrl":null,"url":null,"abstract":"Irradiation from the central star controls the temperature structure in protoplanetary discs. Yet simulations of gravitational instability typically use models of stellar irradiation with varying complexity, or ignore it altogether, assuming heat generated by spiral shocks is balanced by cooling, leading to a self-regulated state. In this paper, we perform simulations of irradiated, gravitationally unstable protoplanetary discs using 3D hydrodynamics coupled with live Monte-Carlo radiative transfer. We find that the resulting temperature profile is approximately constant in time, since the thermal effects of the star dominate. Hence, the disc cannot regulate gravitational instabilities by adjusting the temperatures in the disc. In a 0.1M⊙ disc, the disc instead adjusts by angular momentum transport induced by the spiral arms, leading to steadily decreasing surface density, and hence quenching of the instability. Thus, strong spiral arms caused by self-gravity would not persist for longer than ten thousand years in the absence of fresh infall, although weak spiral structures remain present over longer timescales. Using synthetic images at 1.3mm, we find that spirals formed in irradiated discs are challenging to detect. In higher mass discs, we find that fragmentation is likely because the dominant stellar irradiation overwhelms the stabilising influence of PdV work and shock heating in the spiral arms.","PeriodicalId":18930,"journal":{"name":"Monthly Notices of the Royal Astronomical Society","volume":"44 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monthly Notices of the Royal Astronomical Society","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1093/mnras/stae2167","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Irradiation from the central star controls the temperature structure in protoplanetary discs. Yet simulations of gravitational instability typically use models of stellar irradiation with varying complexity, or ignore it altogether, assuming heat generated by spiral shocks is balanced by cooling, leading to a self-regulated state. In this paper, we perform simulations of irradiated, gravitationally unstable protoplanetary discs using 3D hydrodynamics coupled with live Monte-Carlo radiative transfer. We find that the resulting temperature profile is approximately constant in time, since the thermal effects of the star dominate. Hence, the disc cannot regulate gravitational instabilities by adjusting the temperatures in the disc. In a 0.1M⊙ disc, the disc instead adjusts by angular momentum transport induced by the spiral arms, leading to steadily decreasing surface density, and hence quenching of the instability. Thus, strong spiral arms caused by self-gravity would not persist for longer than ten thousand years in the absence of fresh infall, although weak spiral structures remain present over longer timescales. Using synthetic images at 1.3mm, we find that spirals formed in irradiated discs are challenging to detect. In higher mass discs, we find that fragmentation is likely because the dominant stellar irradiation overwhelms the stabilising influence of PdV work and shock heating in the spiral arms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
孤立辐照圆盘中的短暂引力不稳定性
来自中心恒星的辐照控制着原行星盘的温度结构。然而,对引力不稳定的模拟通常使用复杂程度不同的恒星辐照模型,或者完全忽略它,假设螺旋冲击产生的热量被冷却所平衡,从而导致自我调节状态。在本文中,我们利用三维流体力学和实时蒙特卡洛辐射传递对辐照的、引力不稳定的原行星盘进行了模拟。我们发现,由于恒星的热效应占主导地位,由此产生的温度曲线在时间上近似恒定。因此,圆盘无法通过调整盘内温度来调节引力不稳定性。在 0.1M⊙ 圆盘中,圆盘会通过旋臂引起的角动量传输进行调节,导致表面密度稳步下降,从而熄灭不稳定性。因此,在没有新的内坠的情况下,由自重力引起的强螺旋臂不会持续超过一万年,尽管在更长的时间尺度上仍然存在弱螺旋结构。利用 1.3 毫米的合成图像,我们发现在辐照圆盘中形成的螺旋很难被探测到。在质量较高的圆盘中,我们发现很可能会出现碎裂,因为主要的恒星辐照压倒了螺旋臂中 PdV 工作和冲击加热的稳定影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
37.50%
发文量
3198
审稿时长
3 months
期刊介绍: Monthly Notices of the Royal Astronomical Society is one of the world''s leading primary research journals in astronomy and astrophysics, as well as one of the longest established. It publishes the results of original research in positional and dynamical astronomy, astrophysics, radio astronomy, cosmology, space research and the design of astronomical instruments.
期刊最新文献
Battle of the CH motions: aliphatic versus aromatic contributions to astronomical PAH emission and exploration of the aliphatic, aromatic, and ethynyl CH stretches. Predictive prognostic factors in patients with proximal humeral fracture treated with reverse shoulder arthroplasty. AHKASH: a new Hybrid particle-in-cell code for simulations of astrophysical collisionless plasma. Uncovering Tidal Treasures: Automated Classification of faint tidal features in DECaLS Data CXOU J005245.0-722844: Discovery of a be star / white dwarf binary system in the SMC via a very fast, super-eddington X-ray outburst event
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1