Cointegrated Matrix Autoregression Models

Zebang Li, Han Xiao
{"title":"Cointegrated Matrix Autoregression Models","authors":"Zebang Li, Han Xiao","doi":"arxiv-2409.10860","DOIUrl":null,"url":null,"abstract":"We propose a novel cointegrated autoregressive model for matrix-valued time\nseries, with bi-linear cointegrating vectors corresponding to the rows and\ncolumns of the matrix data. Compared to the traditional cointegration analysis,\nour proposed matrix cointegration model better preserves the inherent structure\nof the data and enables corresponding interpretations. To estimate the\ncointegrating vectors as well as other coefficients, we introduce two types of\nestimators based on least squares and maximum likelihood. We investigate the\nasymptotic properties of the cointegrated matrix autoregressive model under the\nexistence of trend and establish the asymptotic distributions for the\ncointegrating vectors, as well as other model parameters. We conduct extensive\nsimulations to demonstrate its superior performance over traditional methods.\nIn addition, we apply our proposed model to Fama-French portfolios and develop\na effective pairs trading strategy.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a novel cointegrated autoregressive model for matrix-valued time series, with bi-linear cointegrating vectors corresponding to the rows and columns of the matrix data. Compared to the traditional cointegration analysis, our proposed matrix cointegration model better preserves the inherent structure of the data and enables corresponding interpretations. To estimate the cointegrating vectors as well as other coefficients, we introduce two types of estimators based on least squares and maximum likelihood. We investigate the asymptotic properties of the cointegrated matrix autoregressive model under the existence of trend and establish the asymptotic distributions for the cointegrating vectors, as well as other model parameters. We conduct extensive simulations to demonstrate its superior performance over traditional methods. In addition, we apply our proposed model to Fama-French portfolios and develop a effective pairs trading strategy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
协整矩阵自回归模型
我们为矩阵值时间序列提出了一种新的协整自回归模型,其双线性协整向量与矩阵数据的行和列相对应。与传统的协整分析相比,我们提出的矩阵协整模型更好地保留了数据的内在结构,并能进行相应的解释。为了估计协整向量和其他系数,我们引入了基于最小二乘法和最大似然法的两种估计方法。我们研究了趋势存在下协整矩阵自回归模型的渐近特性,并建立了协整向量以及其他模型参数的渐近分布。此外,我们还将提出的模型应用于法玛-法式投资组合,并开发了有效的配对交易策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Poisson approximate likelihood compared to the particle filter Optimising the Trade-Off Between Type I and Type II Errors: A Review and Extensions Bias Reduction in Matched Observational Studies with Continuous Treatments: Calipered Non-Bipartite Matching and Bias-Corrected Estimation and Inference Forecasting age distribution of life-table death counts via α-transformation Probability-scale residuals for event-time data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1