Statistical Inference for Chi-square Statistics or F-Statistics Based on Multiple Imputation

Binhuan Wang, Yixin Fang, Man Jin
{"title":"Statistical Inference for Chi-square Statistics or F-Statistics Based on Multiple Imputation","authors":"Binhuan Wang, Yixin Fang, Man Jin","doi":"arxiv-2409.10812","DOIUrl":null,"url":null,"abstract":"Missing data is a common issue in medical, psychiatry, and social studies. In\nliterature, Multiple Imputation (MI) was proposed to multiply impute datasets\nand combine analysis results from imputed datasets for statistical inference\nusing Rubin's rule. However, Rubin's rule only works for combined inference on\nstatistical tests with point and variance estimates and is not applicable to\ncombine general F-statistics or Chi-square statistics. In this manuscript, we\nprovide a solution to combine F-test statistics from multiply imputed datasets,\nwhen the F-statistic has an explicit fractional form (that is, both the\nnumerator and denominator of the F-statistic are reported). Then we extend the\nmethod to combine Chi-square statistics from multiply imputed datasets.\nFurthermore, we develop methods for two commonly applied F-tests, Welch's ANOVA\nand Type-III tests of fixed effects in mixed effects models, which do not have\nthe explicit fractional form. SAS macros are also developed to facilitate\napplications.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Missing data is a common issue in medical, psychiatry, and social studies. In literature, Multiple Imputation (MI) was proposed to multiply impute datasets and combine analysis results from imputed datasets for statistical inference using Rubin's rule. However, Rubin's rule only works for combined inference on statistical tests with point and variance estimates and is not applicable to combine general F-statistics or Chi-square statistics. In this manuscript, we provide a solution to combine F-test statistics from multiply imputed datasets, when the F-statistic has an explicit fractional form (that is, both the numerator and denominator of the F-statistic are reported). Then we extend the method to combine Chi-square statistics from multiply imputed datasets. Furthermore, we develop methods for two commonly applied F-tests, Welch's ANOVA and Type-III tests of fixed effects in mixed effects models, which do not have the explicit fractional form. SAS macros are also developed to facilitate applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多重估算的卡方统计或 F 统计的统计推断
缺失数据是医学、精神病学和社会研究中的一个常见问题。文献中提出了多重估算(MI)方法,利用鲁宾法则对数据集进行多重估算,并合并估算数据集的分析结果进行统计推断。然而,鲁宾法则只适用于对具有点估计值和方差估计值的统计检验进行合并推断,不适用于合并一般的 F 统计量或卡方统计量。在本手稿中,我们提供了一种解决方案,当 F 统计量具有明确的分数形式(即同时报告 F 统计量的分母和分子)时,可以合并多重归因数据集的 F 检验统计量。此外,我们还开发了两种常用 F 检验方法,即韦尔奇方差分析和混合效应模型中固定效应的第三类检验,这两种检验不具有明确的分数形式。我们还开发了 SAS 宏以方便应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Poisson approximate likelihood compared to the particle filter Optimising the Trade-Off Between Type I and Type II Errors: A Review and Extensions Bias Reduction in Matched Observational Studies with Continuous Treatments: Calipered Non-Bipartite Matching and Bias-Corrected Estimation and Inference Forecasting age distribution of life-table death counts via α-transformation Probability-scale residuals for event-time data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1