Flexible survival regression with variable selection for heterogeneous population

Abhishek Mandal, Abhisek Chakraborty
{"title":"Flexible survival regression with variable selection for heterogeneous population","authors":"Abhishek Mandal, Abhisek Chakraborty","doi":"arxiv-2409.10771","DOIUrl":null,"url":null,"abstract":"Survival regression is widely used to model time-to-events data, to explore\nhow covariates may influence the occurrence of events. Modern datasets often\nencompass a vast number of covariates across many subjects, with only a subset\nof the covariates significantly affecting survival. Additionally, subjects\noften belong to an unknown number of latent groups, where covariate effects on\nsurvival differ significantly across groups. The proposed methodology addresses\nboth challenges by simultaneously identifying the latent sub-groups in the\nheterogeneous population and evaluating covariate significance within each\nsub-group. This approach is shown to enhance the predictive accuracy for\ntime-to-event outcomes, via uncovering varying risk profiles within the\nunderlying heterogeneous population and is thereby helpful to device targeted\ndisease management strategies.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Survival regression is widely used to model time-to-events data, to explore how covariates may influence the occurrence of events. Modern datasets often encompass a vast number of covariates across many subjects, with only a subset of the covariates significantly affecting survival. Additionally, subjects often belong to an unknown number of latent groups, where covariate effects on survival differ significantly across groups. The proposed methodology addresses both challenges by simultaneously identifying the latent sub-groups in the heterogeneous population and evaluating covariate significance within each sub-group. This approach is shown to enhance the predictive accuracy for time-to-event outcomes, via uncovering varying risk profiles within the underlying heterogeneous population and is thereby helpful to device targeted disease management strategies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对异质性人群的灵活生存回归与变量选择
生存回归被广泛用于建立时间到事件数据模型,以探索协变量如何影响事件的发生。现代数据集通常包含许多受试者的大量协变量,但只有部分协变量会显著影响存活率。此外,受试者往往属于未知数量的潜在群体,不同群体的协变量对存活率的影响差异很大。所提出的方法通过同时识别异质性人群中的潜在亚组并评估每个亚组内协变因素的显著性来解决这两个难题。研究表明,这种方法通过发现潜在异质性人群中的不同风险特征,提高了对时间到事件结果的预测准确性,从而有助于制定有针对性的疾病管理策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Poisson approximate likelihood compared to the particle filter Optimising the Trade-Off Between Type I and Type II Errors: A Review and Extensions Bias Reduction in Matched Observational Studies with Continuous Treatments: Calipered Non-Bipartite Matching and Bias-Corrected Estimation and Inference Forecasting age distribution of life-table death counts via α-transformation Probability-scale residuals for event-time data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1