Information criteria for the number of directions of extremes in high-dimensional data

Lucas Butsch, Vicky Fasen-Hartmann
{"title":"Information criteria for the number of directions of extremes in high-dimensional data","authors":"Lucas Butsch, Vicky Fasen-Hartmann","doi":"arxiv-2409.10174","DOIUrl":null,"url":null,"abstract":"In multivariate extreme value analysis, the estimation of the dependence\nstructure in extremes is a challenging task, especially in the context of\nhigh-dimensional data. Therefore, a common approach is to reduce the model\ndimension by considering only the directions in which extreme values occur. In\nthis paper, we use the concept of sparse regular variation recently introduced\nby Meyer and Wintenberger (2021) to derive information criteria for the number\nof directions in which extreme events occur, such as a Bayesian information\ncriterion (BIC), a mean-squared error-based information criterion (MSEIC), and\na quasi-Akaike information criterion (QAIC) based on the Gaussian likelihood\nfunction. As is typical in extreme value analysis, a challenging task is the\nchoice of the number $k_n$ of observations used for the estimation. Therefore,\nfor all information criteria, we present a two-step procedure to estimate both\nthe number of directions of extremes and an optimal choice of $k_n$. We prove\nthat the AIC of Meyer and Wintenberger (2023) and the MSEIC are inconsistent\ninformation criteria for the number of extreme directions whereas the BIC and\nthe QAIC are consistent information criteria. Finally, the performance of the\ndifferent information criteria is compared in a simulation study and applied on\nwind speed data.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"100 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In multivariate extreme value analysis, the estimation of the dependence structure in extremes is a challenging task, especially in the context of high-dimensional data. Therefore, a common approach is to reduce the model dimension by considering only the directions in which extreme values occur. In this paper, we use the concept of sparse regular variation recently introduced by Meyer and Wintenberger (2021) to derive information criteria for the number of directions in which extreme events occur, such as a Bayesian information criterion (BIC), a mean-squared error-based information criterion (MSEIC), and a quasi-Akaike information criterion (QAIC) based on the Gaussian likelihood function. As is typical in extreme value analysis, a challenging task is the choice of the number $k_n$ of observations used for the estimation. Therefore, for all information criteria, we present a two-step procedure to estimate both the number of directions of extremes and an optimal choice of $k_n$. We prove that the AIC of Meyer and Wintenberger (2023) and the MSEIC are inconsistent information criteria for the number of extreme directions whereas the BIC and the QAIC are consistent information criteria. Finally, the performance of the different information criteria is compared in a simulation study and applied on wind speed data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高维数据中极端方向数量的信息标准
在多元极值分析中,估计极值的依赖结构是一项具有挑战性的任务,尤其是在高维数据的背景下。因此,一种常见的方法是通过只考虑极值出现的方向来降低模型维度。在本文中,我们利用 Meyer 和 Wintenberger(2021 年)最近提出的稀疏正则变异概念,推导出极端事件发生方向数量的信息准则,如贝叶斯信息准则(BIC)、基于均方误差的信息准则(MSEIC)和基于高斯似然函数的准阿卡克信息准则(QAIC)。与极值分析中的典型情况一样,一项具有挑战性的任务是选择用于估计的观测值 $k_n$。因此,对于所有信息标准,我们提出了一个两步程序来估计极值的方向数和 $k_n$ 的最佳选择。我们证明,Meyer 和 Wintenberger(2023 年)的 AIC 和 MSEIC 是极端方向数的不一致信息准则,而 BIC 和 QAIC 是一致信息准则。最后,在模拟研究中比较了不同信息标准的性能,并将其应用于风速数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
相关文献
Joint Characterization of Multiscale Information in High Dimensional Data
IF 0 Adv. Artif. Intell. Mach. Learn.Pub Date : 2021-02-18 DOI: 10.54364/AAIML.2021.1113
D. Sousa, C. Small
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Poisson approximate likelihood compared to the particle filter Optimising the Trade-Off Between Type I and Type II Errors: A Review and Extensions Bias Reduction in Matched Observational Studies with Continuous Treatments: Calipered Non-Bipartite Matching and Bias-Corrected Estimation and Inference Forecasting age distribution of life-table death counts via α-transformation Probability-scale residuals for event-time data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1