Dynamic Bayesian Networks with Conditional Dynamics in Edge Addition and Deletion

Lupe S. H. Chan, Amanda M. Y. Chu, Mike K. P. So
{"title":"Dynamic Bayesian Networks with Conditional Dynamics in Edge Addition and Deletion","authors":"Lupe S. H. Chan, Amanda M. Y. Chu, Mike K. P. So","doi":"arxiv-2409.08965","DOIUrl":null,"url":null,"abstract":"This study presents a dynamic Bayesian network framework that facilitates\nintuitive gradual edge changes. We use two conditional dynamics to model the\nedge addition and deletion, and edge selection separately. Unlike previous\nresearch that uses a mixture network approach, which restricts the number of\npossible edge changes, or structural priors to induce gradual changes, which\ncan lead to unclear network evolution, our model induces more frequent and\nintuitive edge change dynamics. We employ Markov chain Monte Carlo (MCMC)\nsampling to estimate the model structures and parameters and demonstrate the\nmodel's effectiveness in a portfolio selection application.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"203 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a dynamic Bayesian network framework that facilitates intuitive gradual edge changes. We use two conditional dynamics to model the edge addition and deletion, and edge selection separately. Unlike previous research that uses a mixture network approach, which restricts the number of possible edge changes, or structural priors to induce gradual changes, which can lead to unclear network evolution, our model induces more frequent and intuitive edge change dynamics. We employ Markov chain Monte Carlo (MCMC) sampling to estimate the model structures and parameters and demonstrate the model's effectiveness in a portfolio selection application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
边缘增删条件动态贝叶斯网络
本研究提出了一个动态贝叶斯网络框架,它有助于直观地逐步改变边缘。我们使用两种条件动力学分别对边缘的添加、删除和边缘选择进行建模。以往的研究使用混合网络方法或结构先验来诱导渐变,前者限制了可能发生的边缘变化的数量,后者可能导致网络演化不清晰,与此不同,我们的模型诱导了更频繁、更直观的边缘变化动态。我们采用马尔科夫链蒙特卡罗(MCMC)采样来估计模型结构和参数,并在投资组合选择应用中展示了模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Poisson approximate likelihood compared to the particle filter Optimising the Trade-Off Between Type I and Type II Errors: A Review and Extensions Bias Reduction in Matched Observational Studies with Continuous Treatments: Calipered Non-Bipartite Matching and Bias-Corrected Estimation and Inference Forecasting age distribution of life-table death counts via α-transformation Probability-scale residuals for event-time data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1