Angular Co-variance using intrinsic geometry of torus: Non-parametric change points detection in meteorological data

Surojit Biswas, Buddhananda Banerjee, Arnab Kumar Laha
{"title":"Angular Co-variance using intrinsic geometry of torus: Non-parametric change points detection in meteorological data","authors":"Surojit Biswas, Buddhananda Banerjee, Arnab Kumar Laha","doi":"arxiv-2409.08838","DOIUrl":null,"url":null,"abstract":"In many temporal datasets, the parameters of the underlying distribution may\nchange abruptly at unknown times. Detecting these changepoints is crucial for\nnumerous applications. While this problem has been extensively studied for\nlinear data, there has been remarkably less research on bivariate angular data.\nFor the first time, we address the changepoint problem for the mean direction\nof toroidal and spherical data, which are types of bivariate angular data. By\nleveraging the intrinsic geometry of a curved torus, we introduce the concept\nof the ``square'' of an angle. This leads us to define the ``curved dispersion\nmatrix'' for bivariate angular random variables, analogous to the dispersion\nmatrix for bivariate linear random variables. Using this analogous measure of\nthe ``Mahalanobis distance,'' we develop two new non-parametric tests to\nidentify changes in the mean direction parameters for toroidal and spherical\ndistributions. We derive the limiting distributions of the test statistics and\nevaluate their power surface and contours through extensive simulations. We\nalso apply the proposed methods to detect changes in mean direction for hourly\nwind-wave direction measurements and the path of the cyclonic storm\n``Biporjoy,'' which occurred between 6th and 19th June 2023 over the Arabian\nSea, western coast of India.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In many temporal datasets, the parameters of the underlying distribution may change abruptly at unknown times. Detecting these changepoints is crucial for numerous applications. While this problem has been extensively studied for linear data, there has been remarkably less research on bivariate angular data. For the first time, we address the changepoint problem for the mean direction of toroidal and spherical data, which are types of bivariate angular data. By leveraging the intrinsic geometry of a curved torus, we introduce the concept of the ``square'' of an angle. This leads us to define the ``curved dispersion matrix'' for bivariate angular random variables, analogous to the dispersion matrix for bivariate linear random variables. Using this analogous measure of the ``Mahalanobis distance,'' we develop two new non-parametric tests to identify changes in the mean direction parameters for toroidal and spherical distributions. We derive the limiting distributions of the test statistics and evaluate their power surface and contours through extensive simulations. We also apply the proposed methods to detect changes in mean direction for hourly wind-wave direction measurements and the path of the cyclonic storm ``Biporjoy,'' which occurred between 6th and 19th June 2023 over the Arabian Sea, western coast of India.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用环的固有几何形状进行角度共变:气象数据中的非参数变化点检测
在许多时间数据集中,基础分布的参数可能会在未知时间突然发生变化。检测这些变化点对于众多应用来说至关重要。我们首次解决了环形数据和球形数据(二维角度数据的一种)平均方向的变化点问题。通过利用曲面环的内在几何特性,我们引入了角度的 "平方 "概念。由此,我们定义了二元角度随机变量的 "曲线离散矩阵",类似于二元线性随机变量的离散矩阵。利用这个类似的 "马哈罗诺比距离 "度量,我们开发了两个新的非参数检验,以识别环形分布和球形分布的平均方向参数的变化。我们得出了检验统计量的极限分布,并通过大量模拟评估了它们的功率面和等值线。我们还将提出的方法应用于检测每小时风向测量的平均风向变化以及2023年6月6日至19日发生在印度西海岸阿拉伯海上空的气旋风暴 "Biporjoy "的路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Poisson approximate likelihood compared to the particle filter Optimising the Trade-Off Between Type I and Type II Errors: A Review and Extensions Bias Reduction in Matched Observational Studies with Continuous Treatments: Calipered Non-Bipartite Matching and Bias-Corrected Estimation and Inference Forecasting age distribution of life-table death counts via α-transformation Probability-scale residuals for event-time data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1