Leveraging large language models for metabolic engineering design

Xiongwen Li, Zhu Liang, Zhetao Guo, Ziyi Liu, Ke Wu, Jiahao Luo, Yuesheng Zhang, Lizheng Liu, Manda Sun, Yuanyuan Huang, Hongting Tang, Yu Chen, Tao Yu, Jens Nielsen, Feiran Li
{"title":"Leveraging large language models for metabolic engineering design","authors":"Xiongwen Li, Zhu Liang, Zhetao Guo, Ziyi Liu, Ke Wu, Jiahao Luo, Yuesheng Zhang, Lizheng Liu, Manda Sun, Yuanyuan Huang, Hongting Tang, Yu Chen, Tao Yu, Jens Nielsen, Feiran Li","doi":"10.1101/2024.09.09.612023","DOIUrl":null,"url":null,"abstract":"Establishing efficient cell factories involves a continuous process of trial and error due to the intricate nature of metabolism. This complexity makes predicting effective engineering targets a challenging task. Therefore, it is vital to learn from the accumulated successes of previous designs for advancing future cell factory development. In this study, we developed a method based on large language models (LLMs) to extract metabolic engineering strategies from research articles on a large scale. We created a database containing over 29006 metabolic engineering entries, 1210 products and 751 organisms. Using this extracted data, we trained a hybrid model combining deep learning and mechanistic approaches to predict engineering targets. Our model outperformed traditional metabolic engineering target prediction algorithms, excelled in predicting the effects of gene modifications, and generalized well to out-of-distribution products and multiple gene combinations. Our study provides a valuable dataset, a chatbot, and an engineering target prediction model for the metabolic engineering field and exemplifies an efficient method for leveraging existing knowledge for future predictions.","PeriodicalId":501213,"journal":{"name":"bioRxiv - Systems Biology","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.09.612023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Establishing efficient cell factories involves a continuous process of trial and error due to the intricate nature of metabolism. This complexity makes predicting effective engineering targets a challenging task. Therefore, it is vital to learn from the accumulated successes of previous designs for advancing future cell factory development. In this study, we developed a method based on large language models (LLMs) to extract metabolic engineering strategies from research articles on a large scale. We created a database containing over 29006 metabolic engineering entries, 1210 products and 751 organisms. Using this extracted data, we trained a hybrid model combining deep learning and mechanistic approaches to predict engineering targets. Our model outperformed traditional metabolic engineering target prediction algorithms, excelled in predicting the effects of gene modifications, and generalized well to out-of-distribution products and multiple gene combinations. Our study provides a valuable dataset, a chatbot, and an engineering target prediction model for the metabolic engineering field and exemplifies an efficient method for leveraging existing knowledge for future predictions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用大型语言模型进行代谢工程设计
由于新陈代谢的复杂性,建立高效的细胞工厂需要不断地尝试和犯错。这种复杂性使得预测有效的工程目标成为一项具有挑战性的任务。因此,汲取以往设计的成功经验对于推动未来细胞工厂的发展至关重要。在本研究中,我们开发了一种基于大型语言模型(LLM)的方法,从研究文章中大规模提取代谢工程策略。我们创建了一个数据库,其中包含超过 29006 个代谢工程条目、1210 种产品和 751 种生物。利用这些提取的数据,我们训练了一个结合深度学习和机理方法的混合模型来预测工程目标。我们的模型优于传统的代谢工程靶标预测算法,在预测基因修饰的影响方面表现出色,并能很好地泛化到分布外产品和多基因组合。我们的研究为代谢工程领域提供了一个宝贵的数据集、一个聊天机器人和一个工程目标预测模型,并示范了一种利用现有知识进行未来预测的高效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoding Cytokine Networks in Ulcerative Colitis to Identify Pathogenic Mechanisms and Therapeutic Targets High-content microscopy and machine learning characterize a cell morphology signature of NF1 genotype in Schwann cells Tissue-specific metabolomic signatures for a doublesex model of reduced sexual dimorphism Sequential design of single-cell experiments to identify discrete stochastic models for gene expression. Environment-mediated interactions cause an externalized and collective memory in microbes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1