Non-destructive estimation of flesh oil content in avocado (Persea americana Mill.) using fluorescence images from 365-nm UV light excitation

IF 2.7 3区 化学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Photochemical & Photobiological Sciences Pub Date : 2024-09-17 DOI:10.1007/s43630-024-00636-0
Tianqi Gao, Yoshito Saito, Yuuka Miwa, Makoto Kuramoto, Keiji Konagaya, Atsuhiro Yamamoto, Shintaro Hashiguchi, Tetsuhito Suzuki, Naoshi Kondo
{"title":"Non-destructive estimation of flesh oil content in avocado (Persea americana Mill.) using fluorescence images from 365-nm UV light excitation","authors":"Tianqi Gao, Yoshito Saito, Yuuka Miwa, Makoto Kuramoto, Keiji Konagaya, Atsuhiro Yamamoto, Shintaro Hashiguchi, Tetsuhito Suzuki, Naoshi Kondo","doi":"10.1007/s43630-024-00636-0","DOIUrl":null,"url":null,"abstract":"<p>The flesh oil content (OC) is a crucial commercial indicator of avocado maturity and directly correlates with its nutritional quality. To meet export standards and optimize edible characteristics, avocados must be harvested at the appropriate stage of physiological maturity. The significant variability in OC during maturation, without any external morphological indicators, poses a longstanding challenge. Currently, harvesting maturity is optimized through time-consuming, destructive laboratory methods like freeze-drying and chemical extraction, which use representative samples to estimate the maturity of entire orchards. In this study, for the first time, we employed fluorescence imaging of avocado skin using 365-nm UV polarized light excitation to estimate the OC in the ‘Bacon’ avocado cultivar. We developed a surface fluorescence index that strongly correlates with OC, achieving correlation coefficients up to − 0.91. Our non-destructive and rapid approach achieved a cross-validation accuracy with an <i>R</i><sup>2</sup> value of 0.81, enabling the classification of avocados with low and high OC. This pioneering method shows considerable potential for further improvement and refinement. This study lays the groundwork for developing a portable, cost-effective, and real-time method for non-destructive in situ monitoring of avocado OC in the field and its integration into large-scale post-harvest grading systems.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":"15 4 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photochemical & Photobiological Sciences","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s43630-024-00636-0","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The flesh oil content (OC) is a crucial commercial indicator of avocado maturity and directly correlates with its nutritional quality. To meet export standards and optimize edible characteristics, avocados must be harvested at the appropriate stage of physiological maturity. The significant variability in OC during maturation, without any external morphological indicators, poses a longstanding challenge. Currently, harvesting maturity is optimized through time-consuming, destructive laboratory methods like freeze-drying and chemical extraction, which use representative samples to estimate the maturity of entire orchards. In this study, for the first time, we employed fluorescence imaging of avocado skin using 365-nm UV polarized light excitation to estimate the OC in the ‘Bacon’ avocado cultivar. We developed a surface fluorescence index that strongly correlates with OC, achieving correlation coefficients up to − 0.91. Our non-destructive and rapid approach achieved a cross-validation accuracy with an R2 value of 0.81, enabling the classification of avocados with low and high OC. This pioneering method shows considerable potential for further improvement and refinement. This study lays the groundwork for developing a portable, cost-effective, and real-time method for non-destructive in situ monitoring of avocado OC in the field and its integration into large-scale post-harvest grading systems.

Graphical abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 365-nm 紫外光激发的荧光图像对鳄梨(Persea americana Mill.)果肉含油量进行非破坏性评估
果肉含油量 (OC) 是鳄梨成熟度的重要商业指标,与其营养质量直接相关。为了达到出口标准并优化食用特性,牛油果必须在适当的生理成熟阶段采收。在没有任何外部形态指标的情况下,牛油果在成熟过程中的成熟度变化很大,这构成了一个长期的挑战。目前,采收成熟度是通过耗时的破坏性实验室方法(如冷冻干燥和化学萃取)来优化的,这些方法使用具有代表性的样本来估计整个果园的成熟度。在这项研究中,我们首次使用 365-nm 紫外线偏振光激发鳄梨表皮的荧光成像来估计 "培根 "鳄梨栽培品种的成熟度。我们开发的表面荧光指数与 OC 密切相关,相关系数高达 -0.91。我们的非破坏性快速方法实现了交叉验证的准确性,R2 值为 0.81,可对低 OC 和高 OC 的鳄梨进行分类。这种开创性的方法显示了进一步改进和完善的巨大潜力。这项研究为开发一种便携式、经济高效的实时方法奠定了基础,这种方法可用于在田间对鳄梨的OC进行非破坏性的现场监测,并可将其纳入大规模的采后分级系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Photochemical & Photobiological Sciences
Photochemical & Photobiological Sciences 生物-生化与分子生物学
CiteScore
5.60
自引率
6.50%
发文量
201
审稿时长
2.3 months
期刊介绍: A society-owned journal publishing high quality research on all aspects of photochemistry and photobiology.
期刊最新文献
Adrenochrome formation during photochemical decomposition of "caged" epinephrine derivatives. Antibacterial effect of new photocatalytically active "complex oxides/PMMA" composites under visible-light irradiation. Detection of pesticide residues using flower-like silver SERS substrates based on flexible sponge. Self-aggregation of 132,132-disubstituted bacteriochlorophyll-d analog. Increasing solar UV radiation in Dortmund, Germany: data and trend analyses and comparison to Uccle, Belgium.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1