Colloidal II–VI nanoplatelets for optoelectronic devices: Progress and perspectives

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL ACS Catalysis Pub Date : 2024-09-14 DOI:10.1007/s12274-024-6965-y
An Hu, Li Ma, Xiaoyu Yang, Yige Yao, Yunke Zhu, Jingjing Qiu, Shuang Wang, Changjun Lu, Yunan Gao
{"title":"Colloidal II–VI nanoplatelets for optoelectronic devices: Progress and perspectives","authors":"An Hu, Li Ma, Xiaoyu Yang, Yige Yao, Yunke Zhu, Jingjing Qiu, Shuang Wang, Changjun Lu, Yunan Gao","doi":"10.1007/s12274-024-6965-y","DOIUrl":null,"url":null,"abstract":"<p>Colloidal II–VI nanoplatelets (NPLs) are solution-processable two-dimensional (2D) quantum dots that have vast potential in high-performance optoelectronic applications, including light-emitting diodes, sensors, and lasers. Superior properties, such as ultrapure emission, giant oscillator strength transition, and directional dipoles, have been demonstrated in these NPLs, which can improve the efficiency of light-emitting diodes and lower the threshold of lasers. In this review, we present an overview of the current progress and propose perspectives on the most well-studied II–VI NPLs that are suitable for the optoelectronic applications. We emphasize that the control of the symmetrical shell growth of NPLs is critical for the practical utilization of the advantages of NPLs in these devices.\n</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12274-024-6965-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Colloidal II–VI nanoplatelets (NPLs) are solution-processable two-dimensional (2D) quantum dots that have vast potential in high-performance optoelectronic applications, including light-emitting diodes, sensors, and lasers. Superior properties, such as ultrapure emission, giant oscillator strength transition, and directional dipoles, have been demonstrated in these NPLs, which can improve the efficiency of light-emitting diodes and lower the threshold of lasers. In this review, we present an overview of the current progress and propose perspectives on the most well-studied II–VI NPLs that are suitable for the optoelectronic applications. We emphasize that the control of the symmetrical shell growth of NPLs is critical for the practical utilization of the advantages of NPLs in these devices.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于光电器件的胶体 II-VI 纳米片:进展与前景
胶体 II-VI 纳米颗粒(NPLs)是一种可溶液加工的二维量子点,在高性能光电应用(包括发光二极管、传感器和激光器)中具有巨大潜力。这些 NPL 具有超纯发射、巨振子强度转变和定向偶极子等优异特性,可以提高发光二极管的效率并降低激光器的阈值。在这篇综述中,我们概述了当前的研究进展,并对适合光电应用的研究最深入的 II-VI NPL 提出了展望。我们强调,控制 NPL 的对称壳生长对于在这些器件中实际利用 NPL 的优势至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
期刊最新文献
Dendrite-free zinc metal anode for long-life zinc-ion batteries enabled by an artificial hydrophobic-zincophilic coating. Bioderived carbon aerogels loaded with g-C3N4 and their high Efficacy removing volatile organic compounds (VOCs). Crosslinking modification of starch improves the structural stability of hard carbon anodes for high-capacity sodium storage. Interfacial design of pyrene-based covalent organic framework for overall photocatalytic H2O2 synthesis in water. LaCo0.95Mo0.05O3/CeO2 composite can promote the effective activation of peroxymonosulfate via Co3+/Co2+ cycle and realize the efficient degradation of hydroxychloroquine sulfate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1