{"title":"Theoretical investigation on elastic property evolutions of low volume fly ash concrete","authors":"Yao Wang, Jinliang Liu","doi":"10.1111/jace.20127","DOIUrl":null,"url":null,"abstract":"<p>Toward expanding the application of fly ash in cement-based materials, this study proposes a comprehensive study on predicting the elastic properties of low-volume fly ash concrete, with the replacement levels limited to 30% or less. Unlike conventional ordinary Portland cement concrete, the inclusion of fly ash in concrete brings alterations in properties from both chemical and physical perspectives: (1) the presence of fly ash liberates the alkaline solution that consumes calcium hydroxide to generate secondary calcium silicate hydrate gels; (2) unreacted fly ash particles exhibits a refinement effect on the micropore structure and contributes to forming a denser solid matrix. In order to characterize these effects on the mechanical properties of fly ash concrete, this paper conducts qualitative assessment of hydration reactions and quantitative calculations of volumetric compounds in the material. Utilizing the Mori‒Tanaka scheme, a predictive model is then developed to integrate the hierarchical effects of constituents at multiple scales on the modulus of elasticity of low-volume fly ash concrete. The reliability of the proposed model is validated through a series of mechanical tests involving various mix designs, as well as comparison with other published test data.</p>","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":"108 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jace.20127","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Toward expanding the application of fly ash in cement-based materials, this study proposes a comprehensive study on predicting the elastic properties of low-volume fly ash concrete, with the replacement levels limited to 30% or less. Unlike conventional ordinary Portland cement concrete, the inclusion of fly ash in concrete brings alterations in properties from both chemical and physical perspectives: (1) the presence of fly ash liberates the alkaline solution that consumes calcium hydroxide to generate secondary calcium silicate hydrate gels; (2) unreacted fly ash particles exhibits a refinement effect on the micropore structure and contributes to forming a denser solid matrix. In order to characterize these effects on the mechanical properties of fly ash concrete, this paper conducts qualitative assessment of hydration reactions and quantitative calculations of volumetric compounds in the material. Utilizing the Mori‒Tanaka scheme, a predictive model is then developed to integrate the hierarchical effects of constituents at multiple scales on the modulus of elasticity of low-volume fly ash concrete. The reliability of the proposed model is validated through a series of mechanical tests involving various mix designs, as well as comparison with other published test data.
期刊介绍:
The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials.
Papers on fundamental ceramic and glass science are welcome including those in the following areas:
Enabling materials for grand challenges[...]
Materials design, selection, synthesis and processing methods[...]
Characterization of compositions, structures, defects, and properties along with new methods [...]
Mechanisms, Theory, Modeling, and Simulation[...]
JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.