Trypsin Partially Cleaves Apolipoprotein A-I (ApoA-I) Precursor into Mature ApoA-I Hindering the Quantification of Naturally Occurring ApoA-I Proteoforms by Liquid Chromatography in Multiple Reaction Monitoring Mode Mass Spectrometry (LC-MRM-MS)
Carmen Llorens-Cebrià, Norberto Núñez-Seral, Yolanda Villena-Ortiz, Irene Martínez-Díaz, Maria José Soler, Roser Ferrer-Costa, Conxita Jacobs-Cachá, Joan López-Hellín
{"title":"Trypsin Partially Cleaves Apolipoprotein A-I (ApoA-I) Precursor into Mature ApoA-I Hindering the Quantification of Naturally Occurring ApoA-I Proteoforms by Liquid Chromatography in Multiple Reaction Monitoring Mode Mass Spectrometry (LC-MRM-MS)","authors":"Carmen Llorens-Cebrià, Norberto Núñez-Seral, Yolanda Villena-Ortiz, Irene Martínez-Díaz, Maria José Soler, Roser Ferrer-Costa, Conxita Jacobs-Cachá, Joan López-Hellín","doi":"10.1021/jasms.4c00155","DOIUrl":null,"url":null,"abstract":"Apolipoprotein A-I (ApoA-I), one of the most abundant proteins in plasma and the major protein component of high-density lipoprotein (HDL), is naturally found in several proteoforms; two of them are ProApoA-I and mature ApoA-I. These two proteoforms of ApoA-I coexist in biological samples and differ only in their N-terminal end. Virtually, the only way to differentiate them is by detecting the proteoform-specific N-terminal proteolytic peptides (RHFWQQDEPPQSPWDR and DEPPQSPWDR, respectively) using liquid chromatography in multiple reaction monitoring mode mass spectrometry (LC-MRM-MS). We have developed a bottom-up LC-MRM-MS method to simultaneously detect proApoA-I and mature ApoA-I. To test the specificity of the method, we digested with trypsin purified mature ApoA-I and recombinant proApoA-I. As expected, only the N-term peptide corresponding to the mature ApoA-I proteoform (DEPPQSPWDR) was detected when digesting mature ApoA-I. However, the digestion of the proApoA-I produced not only the N-terminal peptide corresponding to proApoA-I (RHFWQQDEPPQSPWDR) but also the N-terminal tryptic peptide corresponding to mature ApoA-I (DEPPQSPWDR). This effect was produced by standard and high-specificity trypsin as well as by the Arg-C enzyme in a self-limited manner (approximately 10% of the total). The synthetic proApo-I peptide is not cleaved by trypsin, suggesting that the here reported effect is dependent on protein conformation. The effect is not negligible, as it can be detected by LC-MRM-MS, and correction calculations should be applied to accurately quantify proApoA-I and mature ApoA-I in biological samples where these two proteoforms may coexist.","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jasms.4c00155","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Apolipoprotein A-I (ApoA-I), one of the most abundant proteins in plasma and the major protein component of high-density lipoprotein (HDL), is naturally found in several proteoforms; two of them are ProApoA-I and mature ApoA-I. These two proteoforms of ApoA-I coexist in biological samples and differ only in their N-terminal end. Virtually, the only way to differentiate them is by detecting the proteoform-specific N-terminal proteolytic peptides (RHFWQQDEPPQSPWDR and DEPPQSPWDR, respectively) using liquid chromatography in multiple reaction monitoring mode mass spectrometry (LC-MRM-MS). We have developed a bottom-up LC-MRM-MS method to simultaneously detect proApoA-I and mature ApoA-I. To test the specificity of the method, we digested with trypsin purified mature ApoA-I and recombinant proApoA-I. As expected, only the N-term peptide corresponding to the mature ApoA-I proteoform (DEPPQSPWDR) was detected when digesting mature ApoA-I. However, the digestion of the proApoA-I produced not only the N-terminal peptide corresponding to proApoA-I (RHFWQQDEPPQSPWDR) but also the N-terminal tryptic peptide corresponding to mature ApoA-I (DEPPQSPWDR). This effect was produced by standard and high-specificity trypsin as well as by the Arg-C enzyme in a self-limited manner (approximately 10% of the total). The synthetic proApo-I peptide is not cleaved by trypsin, suggesting that the here reported effect is dependent on protein conformation. The effect is not negligible, as it can be detected by LC-MRM-MS, and correction calculations should be applied to accurately quantify proApoA-I and mature ApoA-I in biological samples where these two proteoforms may coexist.
期刊介绍:
The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role.
Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives