Absolute standard hydrogen electrode potential and redox potentials of atoms and molecules: machine learning aided first principles calculations

Ryosuke Jinnouchi, Ferenc Karsai, Georg Kresse
{"title":"Absolute standard hydrogen electrode potential and redox potentials of atoms and molecules: machine learning aided first principles calculations","authors":"Ryosuke Jinnouchi, Ferenc Karsai, Georg Kresse","doi":"arxiv-2409.11000","DOIUrl":null,"url":null,"abstract":"Constructing a self-consistent first-principles framework that accurately\npredicts the properties of electron transfer reactions through\nfinite-temperature molecular dynamics simulations is a dream of theoretical\nelectrochemists and physical chemists. Yet, predicting even the absolute\nstandard hydrogen electrode potential, the most fundamental reference for\nelectrode potentials, proves to be extremely challenging. Here, we show that a\nhybrid functional incorporating 25 % exact exchange enables quantitative\npredictions when statistically accurate phase-space sampling is achieved via\nthermodynamic integrations and thermodynamic perturbation theory calculations,\nutilizing machine-learned force fields and $\\Delta$-machine learning models.\nThe application to seven redox couples, including molecules and transition\nmetal ions, demonstrates that the hybrid functional can predict redox\npotentials across a wide range of potentials with an average error of 80 mV.","PeriodicalId":501304,"journal":{"name":"arXiv - PHYS - Chemical Physics","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Constructing a self-consistent first-principles framework that accurately predicts the properties of electron transfer reactions through finite-temperature molecular dynamics simulations is a dream of theoretical electrochemists and physical chemists. Yet, predicting even the absolute standard hydrogen electrode potential, the most fundamental reference for electrode potentials, proves to be extremely challenging. Here, we show that a hybrid functional incorporating 25 % exact exchange enables quantitative predictions when statistically accurate phase-space sampling is achieved via thermodynamic integrations and thermodynamic perturbation theory calculations, utilizing machine-learned force fields and $\Delta$-machine learning models. The application to seven redox couples, including molecules and transition metal ions, demonstrates that the hybrid functional can predict redox potentials across a wide range of potentials with an average error of 80 mV.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
绝对标准氢电极电位以及原子和分子的氧化还原电位:机器学习辅助第一原理计算
构建一个自洽的第一原理框架,通过限温分子动力学模拟准确预测电子转移反应的性质,是理论电化学家和物理化学家的梦想。然而,即使是作为电极电位最基本参考的绝对标准氢电极电位的预测也极具挑战性。在这里,我们展示了一种包含 25% 精确交换的混合函数,当利用机器学习力场和 $\Delta$ 机器学习模型,通过热力学积分和热力学扰动理论计算实现统计上精确的相空间采样时,这种混合函数可以进行定量预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Phase-cycling and double-quantum two-dimensional electronic spectroscopy using a common-path birefringent interferometer Developing Orbital-Dependent Corrections for the Non-Additive Kinetic Energy in Subsystem Density Functional Theory Thermodynamics of mixtures with strongly negative deviations from Raoult's law. XV. Permittivities and refractive indices for 1-alkanol + n-hexylamine systems at (293.15-303.15) K. Application of the Kirkwood-Fröhlich model Mutual neutralization of C$_{60}^+$ and C$_{60}^-$ ions: Excitation energies and state-selective rate coefficients All-in-one foundational models learning across quantum chemical levels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1