Dissection of Targeting Molecular Mechanisms of Celastrol-induced Nephrotoxicity via A Combined Deconvolution Strategy of Chemoproteomics and Metabolomics

IF 8.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY International Journal of Biological Sciences Pub Date : 2024-08-26 DOI:10.7150/ijbs.91751
Xueying Liu, Qian Zhang, Peili Wang, Xin Peng, Yehai An, Junhui Chen, Jingnan Huang, Shuanglin Qin, Hengkai He, Mingjing Hao, Jiahang Tian, Letai Yi, Ming Lei, Piao Luo, Jigang Wang, Xinzhou Zhang
{"title":"Dissection of Targeting Molecular Mechanisms of Celastrol-induced Nephrotoxicity via A Combined Deconvolution Strategy of Chemoproteomics and Metabolomics","authors":"Xueying Liu, Qian Zhang, Peili Wang, Xin Peng, Yehai An, Junhui Chen, Jingnan Huang, Shuanglin Qin, Hengkai He, Mingjing Hao, Jiahang Tian, Letai Yi, Ming Lei, Piao Luo, Jigang Wang, Xinzhou Zhang","doi":"10.7150/ijbs.91751","DOIUrl":null,"url":null,"abstract":"Celastrol (Cel), derived from the traditional herb <i>Tripterygium wil</i>fordii Hook. f., has anti-inflammatory, anti-tumor, and immunoregulatory activities. Renal dysfunction, including acute renal failure, has been reported in patients following the administration of Cel-relative medications. However, the functional mechanism of nephrotoxicity caused by Cel is unknown. This study featured combined use of activity-based protein profiling and metabolomics analysis to distinguish the targets of the nephrotoxic effects of Cel. Results suggest that Cel may bind directly to several critical enzymes participating in metabolism and mitochondrial functions. These enzymes include voltage-dependent anion-selective channel protein 1 (essential for maintaining mitochondrial configurational and functional stability), pyruvate carboxylase (involved in sugar isomerization and the tricarboxylic acid cycle), fatty acid synthase (related to β-oxidation of fatty acids), and pyruvate kinase M2 (associated with aerobic respiration). Proteomics and metabolomics analysis confirmed that Cel-targeted proteins disrupt some metabolic biosynthetic processes and promote mitochondrial dysfunction. Ultimately, Cel aggravated kidney cell apoptosis. These cumulative results deliver an insight into the potential mechanisms of Cel-caused nephrotoxicity. They may also facilitate development of antagonistic drugs to mitigate the harmful effects of Cel on the kidneys and improve its clinical applications.","PeriodicalId":13762,"journal":{"name":"International Journal of Biological Sciences","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7150/ijbs.91751","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Celastrol (Cel), derived from the traditional herb Tripterygium wilfordii Hook. f., has anti-inflammatory, anti-tumor, and immunoregulatory activities. Renal dysfunction, including acute renal failure, has been reported in patients following the administration of Cel-relative medications. However, the functional mechanism of nephrotoxicity caused by Cel is unknown. This study featured combined use of activity-based protein profiling and metabolomics analysis to distinguish the targets of the nephrotoxic effects of Cel. Results suggest that Cel may bind directly to several critical enzymes participating in metabolism and mitochondrial functions. These enzymes include voltage-dependent anion-selective channel protein 1 (essential for maintaining mitochondrial configurational and functional stability), pyruvate carboxylase (involved in sugar isomerization and the tricarboxylic acid cycle), fatty acid synthase (related to β-oxidation of fatty acids), and pyruvate kinase M2 (associated with aerobic respiration). Proteomics and metabolomics analysis confirmed that Cel-targeted proteins disrupt some metabolic biosynthetic processes and promote mitochondrial dysfunction. Ultimately, Cel aggravated kidney cell apoptosis. These cumulative results deliver an insight into the potential mechanisms of Cel-caused nephrotoxicity. They may also facilitate development of antagonistic drugs to mitigate the harmful effects of Cel on the kidneys and improve its clinical applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过化学蛋白组学和代谢组学的联合解旋策略剖析 Celastrol 诱导肾毒性的靶向分子机制
Celastrol (Cel) 提取自传统草药 Tripterygium wilfordii Hook.f.,具有抗炎、抗肿瘤和免疫调节活性。有报告称,服用 Cel 相关药物的患者会出现肾功能障碍,包括急性肾衰竭。然而,Cel 引起肾毒性的功能机制尚不清楚。本研究结合使用基于活性的蛋白质分析和代谢组学分析来区分 Cel 肾毒性作用的靶点。结果表明,Cel 可能直接与参与新陈代谢和线粒体功能的几种关键酶结合。这些酶包括电压依赖性阴离子选择性通道蛋白1(对维持线粒体构型和功能稳定性至关重要)、丙酮酸羧化酶(参与糖异构化和三羧酸循环)、脂肪酸合成酶(与脂肪酸的β-氧化有关)和丙酮酸激酶M2(与有氧呼吸有关)。蛋白质组学和代谢组学分析证实,Cel靶向蛋白破坏了一些代谢生物合成过程,并促进线粒体功能障碍。最终,Cel 加剧了肾细胞凋亡。这些累积的结果使人们对 Cel 导致肾毒性的潜在机制有了深入的了解。它们还有助于开发拮抗药物,以减轻 Cel 对肾脏的有害影响并改善其临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Biological Sciences
International Journal of Biological Sciences 生物-生化与分子生物学
CiteScore
16.90
自引率
1.10%
发文量
413
审稿时长
1 months
期刊介绍: The International Journal of Biological Sciences is a peer-reviewed, open-access scientific journal published by Ivyspring International Publisher. It dedicates itself to publishing original articles, reviews, and short research communications across all domains of biological sciences.
期刊最新文献
Targeting mitochondria by lipid-selenium conjugate drug results in malate/fumarate exhaustion and induces mitophagy-mediated necroptosis suppression. Mechanistic study of celastrol-mediated inhibition of proinflammatory activation of macrophages in IgA nephropathy via down-regulating ECM1. Micro(nano)plastics: an Emerging Burden for Human Health. New insights into non-small cell lung cancer bone metastasis: mechanisms and therapies. SUMOylation modification of HNRNPK at the K422 site promotes invasion in glioblastoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1