{"title":"Reproductive ecology of fire corals in the northern Red Sea","authors":"Lachan Roth, Tom Shlesinger, Yossi Loya","doi":"10.1007/s00338-024-02565-x","DOIUrl":null,"url":null,"abstract":"<p>Scleractinian corals, the principal architects of coral reefs, face substantial threats from ongoing and anticipated climate change and other anthropogenic disturbances. This underscores the significance of investigating alternative reef-building organisms and their contribution to reefs’ resilience. Among these alternatives, colonial hydrozoans of the genus <i>Millepora</i>, commonly called ‘fire corals’, play substantial roles in contributing to coral reef structure and functionality by depositing calcareous exoskeletons. Despite the ecological importance of fire corals, fundamental knowledge gaps remain regarding their biology and reproductive ecology. Here, we present a comprehensive study on the population dynamics, reproductive ecology, phenology, and sex ratio of the three Red Sea fire corals—<i>Millepora dichotoma, M. exaesa</i>, and <i>M. platyphylla—</i>in the Gulf of Aqaba and Eilat. The abundance of <i>M. dichotoma</i> and <i>M. exaesa</i> seems to have remained consistent over the last 50 years across two of the three depth zones surveyed, indicating their potential resistance or resilience. However, at the third depth surveyed, their abundance appears to have decreased. Our extensive <i>in-situ</i> monitoring of breeding events over six consecutive years has revealed a previously undetected relationship between <i>Millepora</i> species breeding events and the lunar cycle. Histological analyses indicated remarkably short reproductive cycles of only 2–3 weeks, recurring multiple times within a single season, in both <i>M. dichotoma</i> and <i>M. exaesa,</i> which is a unique reproductive aspect compared to other reef-building corals. These results highlight the high reproductive and resilience potential of <i>Millepora</i> species. Consequently, fire corals could assume a more substantial role as keystone species in changing environments and future reefs, emphasizing their importance in reef conservation and management.</p>","PeriodicalId":10821,"journal":{"name":"Coral Reefs","volume":"4 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coral Reefs","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00338-024-02565-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Scleractinian corals, the principal architects of coral reefs, face substantial threats from ongoing and anticipated climate change and other anthropogenic disturbances. This underscores the significance of investigating alternative reef-building organisms and their contribution to reefs’ resilience. Among these alternatives, colonial hydrozoans of the genus Millepora, commonly called ‘fire corals’, play substantial roles in contributing to coral reef structure and functionality by depositing calcareous exoskeletons. Despite the ecological importance of fire corals, fundamental knowledge gaps remain regarding their biology and reproductive ecology. Here, we present a comprehensive study on the population dynamics, reproductive ecology, phenology, and sex ratio of the three Red Sea fire corals—Millepora dichotoma, M. exaesa, and M. platyphylla—in the Gulf of Aqaba and Eilat. The abundance of M. dichotoma and M. exaesa seems to have remained consistent over the last 50 years across two of the three depth zones surveyed, indicating their potential resistance or resilience. However, at the third depth surveyed, their abundance appears to have decreased. Our extensive in-situ monitoring of breeding events over six consecutive years has revealed a previously undetected relationship between Millepora species breeding events and the lunar cycle. Histological analyses indicated remarkably short reproductive cycles of only 2–3 weeks, recurring multiple times within a single season, in both M. dichotoma and M. exaesa, which is a unique reproductive aspect compared to other reef-building corals. These results highlight the high reproductive and resilience potential of Millepora species. Consequently, fire corals could assume a more substantial role as keystone species in changing environments and future reefs, emphasizing their importance in reef conservation and management.
期刊介绍:
Coral Reefs, the Journal of the International Coral Reef Society, presents multidisciplinary literature across the broad fields of reef studies, publishing analytical and theoretical papers on both modern and ancient reefs. These encourage the search for theories about reef structure and dynamics, and the use of experimentation, modeling, quantification and the applied sciences.
Coverage includes such subject areas as population dynamics; community ecology of reef organisms; energy and nutrient flows; biogeochemical cycles; physiology of calcification; reef responses to natural and anthropogenic influences; stress markers in reef organisms; behavioural ecology; sedimentology; diagenesis; reef structure and morphology; evolutionary ecology of the reef biota; palaeoceanography of coral reefs and coral islands; reef management and its underlying disciplines; molecular biology and genetics of coral; aetiology of disease in reef-related organisms; reef responses to global change, and more.