{"title":"Morphological and chronological mapping of Petavius crater, nearside of the Moon","authors":"A.V. Satyakumar , Shreekumari Patel","doi":"10.1016/j.asr.2024.08.074","DOIUrl":null,"url":null,"abstract":"<div><div>Petavius, a complex crater from the late Imbrian epoch, features a giant central peak, numerous smaller peaks, and an inner terraced wall arising nearly 3 km above the crater floor. The region has seen periods of tectonic and volcanic activity. A meter-scale detailed mapping of LROC- Narrow Angle Camera (NAC) images was carried out to understand the tectonic features and associated volcanic history under this crater. We found many fragmented blocks, fields of striated boulders, grabens, layering near grabens and striated boulders, rock exposures, and many fractures from NAC mapping, indicating magma<!--> <!-->creating pressure underneath the floor of a crater. The fractures identified from NAC images are probably linked with an underlying magmatic sill of high-density bodies. Crater size-frequency distribution analysis indicates that magmatic activity likely persisted for ∼2.75 Ga in the Petavius crater. It is noteworthy that this relatively recent age of volcanism has not been reported previously. The crustal thickness of the study region varies from 27 to 40 km; at the mapped tectonic features and volcanic regions, the crustal thickness of 30–34 km is found. The unique tectonic environment of the Petavius crater, in combination with the associated morphological variation and numerous exposures of mafic, suggests that the crater formed in phases associated with its structural and morphologic features and is derived from the lower crust. The morphometric analysis and previous studies support a model of magmatic intrusion and sill formation within the fractured crust beneath the crater floor; such a sill would be a likely source both for effusive mare material erupted through floor fractures into low-lying portions of the crater floor. The tectonic system on the floor of the crater was the result of post-impact processes.</div></div>","PeriodicalId":50850,"journal":{"name":"Advances in Space Research","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Space Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0273117724009165","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Petavius, a complex crater from the late Imbrian epoch, features a giant central peak, numerous smaller peaks, and an inner terraced wall arising nearly 3 km above the crater floor. The region has seen periods of tectonic and volcanic activity. A meter-scale detailed mapping of LROC- Narrow Angle Camera (NAC) images was carried out to understand the tectonic features and associated volcanic history under this crater. We found many fragmented blocks, fields of striated boulders, grabens, layering near grabens and striated boulders, rock exposures, and many fractures from NAC mapping, indicating magma creating pressure underneath the floor of a crater. The fractures identified from NAC images are probably linked with an underlying magmatic sill of high-density bodies. Crater size-frequency distribution analysis indicates that magmatic activity likely persisted for ∼2.75 Ga in the Petavius crater. It is noteworthy that this relatively recent age of volcanism has not been reported previously. The crustal thickness of the study region varies from 27 to 40 km; at the mapped tectonic features and volcanic regions, the crustal thickness of 30–34 km is found. The unique tectonic environment of the Petavius crater, in combination with the associated morphological variation and numerous exposures of mafic, suggests that the crater formed in phases associated with its structural and morphologic features and is derived from the lower crust. The morphometric analysis and previous studies support a model of magmatic intrusion and sill formation within the fractured crust beneath the crater floor; such a sill would be a likely source both for effusive mare material erupted through floor fractures into low-lying portions of the crater floor. The tectonic system on the floor of the crater was the result of post-impact processes.
期刊介绍:
The COSPAR publication Advances in Space Research (ASR) is an open journal covering all areas of space research including: space studies of the Earth''s surface, meteorology, climate, the Earth-Moon system, planets and small bodies of the solar system, upper atmospheres, ionospheres and magnetospheres of the Earth and planets including reference atmospheres, space plasmas in the solar system, astrophysics from space, materials sciences in space, fundamental physics in space, space debris, space weather, Earth observations of space phenomena, etc.
NB: Please note that manuscripts related to life sciences as related to space are no more accepted for submission to Advances in Space Research. Such manuscripts should now be submitted to the new COSPAR Journal Life Sciences in Space Research (LSSR).
All submissions are reviewed by two scientists in the field. COSPAR is an interdisciplinary scientific organization concerned with the progress of space research on an international scale. Operating under the rules of ICSU, COSPAR ignores political considerations and considers all questions solely from the scientific viewpoint.