{"title":"Computational investigation of both geometric and fluidic compressible turbulent thrust vectoring, using a Coanda based nozzle","authors":"Alireza Nayebi, Mohammad Taeibi Rahni","doi":"10.1063/5.0222070","DOIUrl":null,"url":null,"abstract":"This study addresses the challenge of enhancing aircraft maneuverability, particularly for vertical landing and takeoff, focusing on the fluidic aerial Coanda high efficiency orienting jet nozzle that employs the Coanda effect to achieve thrust vectoring. This research advances understanding of the interplay between geometric and fluidic factors in thrust vectoring. Stationary, turbulent, and compressible flow conditions are assumed, employing Favre-averaged Reynolds-averaged Navier–Stokes approach with the standard k-ε model. Computational solutions were obtained using a pressure-based finite volume method and a structured computational grid. The key findings include thrust vectoring enhancement due to an increase in the total mass flow rate, septum position (at no shock wave-related issues), and Reynolds number. In addition, shock wave formation (at specific mass flow rates and septum positions) considerably affects thrust vectoring. These insights are crucial for optimizing Coanda-based nozzle design in advanced propulsion systems, including in unmanned aircraft vehicles.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"23 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0222070","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study addresses the challenge of enhancing aircraft maneuverability, particularly for vertical landing and takeoff, focusing on the fluidic aerial Coanda high efficiency orienting jet nozzle that employs the Coanda effect to achieve thrust vectoring. This research advances understanding of the interplay between geometric and fluidic factors in thrust vectoring. Stationary, turbulent, and compressible flow conditions are assumed, employing Favre-averaged Reynolds-averaged Navier–Stokes approach with the standard k-ε model. Computational solutions were obtained using a pressure-based finite volume method and a structured computational grid. The key findings include thrust vectoring enhancement due to an increase in the total mass flow rate, septum position (at no shock wave-related issues), and Reynolds number. In addition, shock wave formation (at specific mass flow rates and septum positions) considerably affects thrust vectoring. These insights are crucial for optimizing Coanda-based nozzle design in advanced propulsion systems, including in unmanned aircraft vehicles.
期刊介绍:
Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to:
-Acoustics
-Aerospace and aeronautical flow
-Astrophysical flow
-Biofluid mechanics
-Cavitation and cavitating flows
-Combustion flows
-Complex fluids
-Compressible flow
-Computational fluid dynamics
-Contact lines
-Continuum mechanics
-Convection
-Cryogenic flow
-Droplets
-Electrical and magnetic effects in fluid flow
-Foam, bubble, and film mechanics
-Flow control
-Flow instability and transition
-Flow orientation and anisotropy
-Flows with other transport phenomena
-Flows with complex boundary conditions
-Flow visualization
-Fluid mechanics
-Fluid physical properties
-Fluid–structure interactions
-Free surface flows
-Geophysical flow
-Interfacial flow
-Knudsen flow
-Laminar flow
-Liquid crystals
-Mathematics of fluids
-Micro- and nanofluid mechanics
-Mixing
-Molecular theory
-Nanofluidics
-Particulate, multiphase, and granular flow
-Processing flows
-Relativistic fluid mechanics
-Rotating flows
-Shock wave phenomena
-Soft matter
-Stratified flows
-Supercritical fluids
-Superfluidity
-Thermodynamics of flow systems
-Transonic flow
-Turbulent flow
-Viscous and non-Newtonian flow
-Viscoelasticity
-Vortex dynamics
-Waves