Criteria of Solvability for Asymmetric Difference Schemes at High-Accuracy Approximation of Boundary Conditions

IF 0.4 Q4 MATHEMATICS, APPLIED Numerical Analysis and Applications Pub Date : 2024-09-13 DOI:10.1134/s1995423924030066
V. I. Paasonen
{"title":"Criteria of Solvability for Asymmetric Difference Schemes at High-Accuracy Approximation of Boundary Conditions","authors":"V. I. Paasonen","doi":"10.1134/s1995423924030066","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In this paper we study a technology of calculating difference problems with internal boundary conditions of flux balance constructed by means of one-sided multipoint difference analogs of first derivatives of arbitrary order of accuracy. The technology is suitable for any type of differential equations to be solved and admits the same type of realization at any order of accuracy. In contrast to the approximations based on an extended system of equations, this technology does not lead to complications in splitting multidimensional problems into one-dimensional ones. Sufficient conditions of solvability and stability are formulated for realizations of the algorithms by using the double-sweep method for boundary conditions of arbitrary order of accuracy. Their proof is based on a reduction of the multipoint boundary conditions to a form that does not violate the tridiagonal structure of the matrices and the establishment of conditions of diagonal dominance in the transformed matrix rows corresponding to the external and internal boundary conditions.</p>","PeriodicalId":43697,"journal":{"name":"Numerical Analysis and Applications","volume":"39 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1995423924030066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we study a technology of calculating difference problems with internal boundary conditions of flux balance constructed by means of one-sided multipoint difference analogs of first derivatives of arbitrary order of accuracy. The technology is suitable for any type of differential equations to be solved and admits the same type of realization at any order of accuracy. In contrast to the approximations based on an extended system of equations, this technology does not lead to complications in splitting multidimensional problems into one-dimensional ones. Sufficient conditions of solvability and stability are formulated for realizations of the algorithms by using the double-sweep method for boundary conditions of arbitrary order of accuracy. Their proof is based on a reduction of the multipoint boundary conditions to a form that does not violate the tridiagonal structure of the matrices and the establishment of conditions of diagonal dominance in the transformed matrix rows corresponding to the external and internal boundary conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高精度近似边界条件下非对称差分方案的可解性标准
摘要 在本文中,我们研究了一种通过任意精度阶数的单边多点差分一阶导数类似物来计算具有通量平衡内部边界条件的差分问题的技术。该技术适用于需要求解的任何类型的微分方程,并可在任何精度阶数下实现相同类型的求解。与基于扩展方程系统的近似方法相比,该技术不会导致将多维问题拆分为一维问题的复杂性。针对任意精度等级的边界条件,使用双扫法为算法的实现提出了可解性和稳定性的充分条件。其证明基于将多点边界条件简化为不违反矩阵三对角线结构的形式,以及在与外部和内部边界条件相对应的转换矩阵行中建立对角线优势条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Numerical Analysis and Applications
Numerical Analysis and Applications MATHEMATICS, APPLIED-
CiteScore
1.00
自引率
0.00%
发文量
22
期刊介绍: Numerical Analysis and Applications is the translation of Russian periodical Sibirskii Zhurnal Vychislitel’noi Matematiki (Siberian Journal of Numerical Mathematics) published by the Siberian Branch of the Russian Academy of Sciences Publishing House since 1998. The aim of this journal is to demonstrate, in concentrated form, to the Russian and International Mathematical Community the latest and most important investigations of Siberian numerical mathematicians in various scientific and engineering fields. The journal deals with the following topics: Theory and practice of computational methods, mathematical physics, and other applied fields; Mathematical models of elasticity theory, hydrodynamics, gas dynamics, and geophysics; Parallelizing of algorithms; Models and methods of bioinformatics.
期刊最新文献
Application of Ensemble Kalman Smoothing in Inverse Modeling of Advection and Diffusion On Existence and Numerical Solution of a New Class of Nonlinear Second Degree Integro-Differential Volterra Equation with Convolution Kernel Partial Multivariate Errors-in-Variables Model and Its Application in Settlement Monitoring How a Unitoid Matrix Loses Its Unitoidness? An Explicit Finite Difference Approximation for Space-Time Riesz–Caputo Variable Order Fractional Wave Equation Using Hermitian Interpolation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1