{"title":"Experimental research on radiation blockage of the fuel vapor and flame in pool fires","authors":"Fanliang Ge, Anthony Hamins, Tinting Qiu, Jie Ji","doi":"10.1016/j.proci.2024.105764","DOIUrl":null,"url":null,"abstract":"Pool fires are the most prevalent accidents in the process industry. Revealing the physical mechanism of pool fire has both fundamental and practical applications in process safety and risk analysis. This paper intends to study the radiation blockage phenomenon caused by fuel vapor and flame in pool fires. Combustion and evaporation (non-combustion) experiments under different external radiative heat fluxes have been conducted to differentiate the radiation blockage of the fuel vapor and the flame. Four different sooting fuels including methanol, ethanol, n-heptane and toluene were used in the experiments. The radiation blockage of fuel vapor was determined through evaporation experiments. The radiation blockage of flame and the total radiation blockage of pool fires were investigated by burning experiments. Based on the assumptions of radiation gray for flame radiation and external radiation, the effective radiation blockage was determined. It is found that the effective radiation blockage coefficient of the fuel vapor increases with fuel mass flux first, and then gradually approaches a constant value because the radiation absorption capacity of the fuel vapor tends to saturate with the increase of fuel mass flux. The correlations between the fuel vapor radiation blockage coefficient and fuel mass flux are established based on theoretical analysis and experimental data. Moreover, the flame blockage coefficient decreases with external radiation for methanol, ethanol and n-heptane because the fire expands, causing enhanced radiative heat feedback from the flame. For the heavily sooting fuel, toluene, the flame radiation blockage almost remains constant with external radiation due to high soot concentrations.","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":"7 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Combustion Institute","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.proci.2024.105764","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Pool fires are the most prevalent accidents in the process industry. Revealing the physical mechanism of pool fire has both fundamental and practical applications in process safety and risk analysis. This paper intends to study the radiation blockage phenomenon caused by fuel vapor and flame in pool fires. Combustion and evaporation (non-combustion) experiments under different external radiative heat fluxes have been conducted to differentiate the radiation blockage of the fuel vapor and the flame. Four different sooting fuels including methanol, ethanol, n-heptane and toluene were used in the experiments. The radiation blockage of fuel vapor was determined through evaporation experiments. The radiation blockage of flame and the total radiation blockage of pool fires were investigated by burning experiments. Based on the assumptions of radiation gray for flame radiation and external radiation, the effective radiation blockage was determined. It is found that the effective radiation blockage coefficient of the fuel vapor increases with fuel mass flux first, and then gradually approaches a constant value because the radiation absorption capacity of the fuel vapor tends to saturate with the increase of fuel mass flux. The correlations between the fuel vapor radiation blockage coefficient and fuel mass flux are established based on theoretical analysis and experimental data. Moreover, the flame blockage coefficient decreases with external radiation for methanol, ethanol and n-heptane because the fire expands, causing enhanced radiative heat feedback from the flame. For the heavily sooting fuel, toluene, the flame radiation blockage almost remains constant with external radiation due to high soot concentrations.
期刊介绍:
The Proceedings of the Combustion Institute contains forefront contributions in fundamentals and applications of combustion science. For more than 50 years, the Combustion Institute has served as the peak international society for dissemination of scientific and technical research in the combustion field. In addition to author submissions, the Proceedings of the Combustion Institute includes the Institute''s prestigious invited strategic and topical reviews that represent indispensable resources for emergent research in the field. All papers are subjected to rigorous peer review.
Research papers and invited topical reviews; Reaction Kinetics; Soot, PAH, and other large molecules; Diagnostics; Laminar Flames; Turbulent Flames; Heterogeneous Combustion; Spray and Droplet Combustion; Detonations, Explosions & Supersonic Combustion; Fire Research; Stationary Combustion Systems; IC Engine and Gas Turbine Combustion; New Technology Concepts
The electronic version of Proceedings of the Combustion Institute contains supplemental material such as reaction mechanisms, illustrating movies, and other data.