Wenjun Zhang, Wenyu Zhang, Shumin Lin, Xing Ke, Min Zhang, Taohua He
{"title":"Shale Oil Generation Conditions and Exploration Prospects of the Cretaceous Nenjiang Formation in the Changling Depression, Songliao Basin, China","authors":"Wenjun Zhang, Wenyu Zhang, Shumin Lin, Xing Ke, Min Zhang, Taohua He","doi":"10.3390/min14090942","DOIUrl":null,"url":null,"abstract":"Low-maturity shale oil predominates in shale oil resources. China’s onshore shale oil, particularly the Cretaceous Nenjiang Formation in the Songliao Basin, holds significant potential for low-maturity shale oil, presenting promising exploration and development prospects. This study delves into the hydrocarbon generation conditions, reservoir characteristics, and oil-bearing property analysis of the mud shale from the Nen-1 and Nen-2 sub-formations of the Nenjiang Formation to pinpoint favorable intervals for shale oil exploration. Through the integration of lithology, pressure, and fracture distribution data in the study area, favorable zones were delineated. The Nen-1 sub-formation is widely distributed in the Changling Depression, with mud shale thickness ranging from 30 to 100 m and a total organic content exceeding 2.0%. Type I kerogen predominated as the source rock, while some samples contained type II kerogen. Organic microcomponents primarily comprised algal bodies, with vitrinite reflectance (Ro) ranging from 0.5% to 0.8%. Compared to Nen-1 shale, Nen-2 shale exhibited less total organic content, kerogen type, and thermal evolution degree, albeit both are conducive to low-maturity shale oil generation. The Nen-1 and Nen-2 sub-formations predominantly consist of clay, quartz, feldspar, calcite, and pyrite minerals, with minor dolomite, siderite, and anhydrite. Hydrocarbons primarily reside in microfractures and micropores, including interlayer micropores, organic matter micropores, intra-cuticle micropores, and intercrystalline microporosity, with interlayer and intra-cuticle micropores being dominant. The free oil content (S1) in Nen-1 shale ranged from 0.01 mg/g to 5.04 mg/g (average: 1.13 mg/g), while in Nen-2 shale, it ranged from 0.01 mg/g to 3.28 mg/g (average: 0.75 mg/g). The Nen-1 and Nen-2 sub-formations are identified as potential intervals for shale oil exploration. Considering total organic content, oil saturation, vitrinite reflectance, and shale formation thickness in the study area, the favorable zone for low-maturity shale oil generation is primarily situated in the Heidimiao Sub-Depression and its vicinity. The Nen-2 shale-oil-enriched zone is concentrated in the northwest part of the Heidimiao Sub-Depression, while the Nen-1 shale-oil-enriched zone lies in the northeast part.","PeriodicalId":18601,"journal":{"name":"Minerals","volume":"31 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerals","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/min14090942","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Low-maturity shale oil predominates in shale oil resources. China’s onshore shale oil, particularly the Cretaceous Nenjiang Formation in the Songliao Basin, holds significant potential for low-maturity shale oil, presenting promising exploration and development prospects. This study delves into the hydrocarbon generation conditions, reservoir characteristics, and oil-bearing property analysis of the mud shale from the Nen-1 and Nen-2 sub-formations of the Nenjiang Formation to pinpoint favorable intervals for shale oil exploration. Through the integration of lithology, pressure, and fracture distribution data in the study area, favorable zones were delineated. The Nen-1 sub-formation is widely distributed in the Changling Depression, with mud shale thickness ranging from 30 to 100 m and a total organic content exceeding 2.0%. Type I kerogen predominated as the source rock, while some samples contained type II kerogen. Organic microcomponents primarily comprised algal bodies, with vitrinite reflectance (Ro) ranging from 0.5% to 0.8%. Compared to Nen-1 shale, Nen-2 shale exhibited less total organic content, kerogen type, and thermal evolution degree, albeit both are conducive to low-maturity shale oil generation. The Nen-1 and Nen-2 sub-formations predominantly consist of clay, quartz, feldspar, calcite, and pyrite minerals, with minor dolomite, siderite, and anhydrite. Hydrocarbons primarily reside in microfractures and micropores, including interlayer micropores, organic matter micropores, intra-cuticle micropores, and intercrystalline microporosity, with interlayer and intra-cuticle micropores being dominant. The free oil content (S1) in Nen-1 shale ranged from 0.01 mg/g to 5.04 mg/g (average: 1.13 mg/g), while in Nen-2 shale, it ranged from 0.01 mg/g to 3.28 mg/g (average: 0.75 mg/g). The Nen-1 and Nen-2 sub-formations are identified as potential intervals for shale oil exploration. Considering total organic content, oil saturation, vitrinite reflectance, and shale formation thickness in the study area, the favorable zone for low-maturity shale oil generation is primarily situated in the Heidimiao Sub-Depression and its vicinity. The Nen-2 shale-oil-enriched zone is concentrated in the northwest part of the Heidimiao Sub-Depression, while the Nen-1 shale-oil-enriched zone lies in the northeast part.
期刊介绍:
Minerals (ISSN 2075-163X) is an international open access journal that covers the broad field of mineralogy, economic mineral resources, mineral exploration, innovative mining techniques and advances in mineral processing. It publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.